A method for continuous study of soaring and windhovering birds

Abstract Avian flight continues to inspire aircraft designers. Reducing the scale of autonomous aircraft to that of birds and large insects has resulted in new control challenges when attempting to hold steady flight in turbulent atmospheric wind. Some birds, however, are capable of remarkably stabl...

Full description

Bibliographic Details
Main Authors: Matthew Penn, George Yi, Simon Watkins, Mario Martinez Groves-Raines, Shane P. Windsor, Abdulghani Mohamed
Format: Article
Language:English
Published: Nature Portfolio 2022-04-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-10359-w
Description
Summary:Abstract Avian flight continues to inspire aircraft designers. Reducing the scale of autonomous aircraft to that of birds and large insects has resulted in new control challenges when attempting to hold steady flight in turbulent atmospheric wind. Some birds, however, are capable of remarkably stable hovering flight in the same conditions. This work describes the development of a wind tunnel configuration that facilitates the study of flapless windhovering (hanging) and soaring bird flight in wind conditions replicating those in nature. Updrafts were generated by flow over replica “hills” and turbulence was introduced through upstream grids, which had already been developed to replicate atmospheric turbulence in prior studies. Successful flight tests with windhovering nankeen kestrels (Falco cenchroides) were conducted, verifying that the facility can support soaring and wind hovering bird flight. The wind tunnel allows the flow characteristics to be carefully controlled and measured, providing great advantages over outdoor flight tests. Also, existing wind tunnels may be readily configured using this method, providing a simpler alternative to the development of dedicated bird flight wind tunnels such as tilting wind tunnels, and the large test section allows for the replication of orographic soaring. This methodology holds promise for future testing investigating the flight behaviour and control responses employed by soaring and windhovering birds.
ISSN:2045-2322