ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions

The electrocardiogram signal (ECG) is a bio-signal used to determine cardiac health. However, different types of noise that commonly accompany these signals can hide valuable information for diagnosing disorders. The paper presents an experimental study to remove the noise in ECG signals using the D...

Full description

Bibliographic Details
Main Authors: Marco Gualsaquí, Iván Vizcaíno, Víctor Proaño, Marco Flores
Format: Article
Language:English
Published: Universidad de Cuenca 2018-06-01
Series:Maskana
Subjects:
Online Access:https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/1858
_version_ 1818665306350944256
author Marco Gualsaquí
Iván Vizcaíno
Víctor Proaño
Marco Flores
author_facet Marco Gualsaquí
Iván Vizcaíno
Víctor Proaño
Marco Flores
author_sort Marco Gualsaquí
collection DOAJ
description The electrocardiogram signal (ECG) is a bio-signal used to determine cardiac health. However, different types of noise that commonly accompany these signals can hide valuable information for diagnosing disorders. The paper presents an experimental study to remove the noise in ECG signals using the Discrete Wavelet Transform (DWT) theory and a set of thresholds filters for efficient noise filtering. For the assessment process, we used ECG records from MIT-BIH Arrhythmia database (MITDB) and standardized noise signals (muscle activity and electrode-skin contact) database from the Noise Stress Test database. In addition to the ECG signals a white Gaussian noise present in electrical type signals was added. Furthermore, as a first step we considered baseline wander and power line interference reduction. The metrics used are the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error (RMSE), the Percent Root mean square Difference (PRD), and the Euclidian L2 Norm standard (L2N). Results reveal that there is not a single combination of filtering thresholds (function and value) to minimize all types of noise and interference present in ECG signals. Reason why an ECG denoising algorithm is proposed which allows choosing the appropriate combination (function-value) threshold, where the SNR values were the maximum and the error values were the minimum.
first_indexed 2024-12-17T05:46:32Z
format Article
id doaj.art-81dc00cc59f04227b6e066db435c2e33
institution Directory Open Access Journal
issn 1390-6143
2477-8893
language English
last_indexed 2024-12-17T05:46:32Z
publishDate 2018-06-01
publisher Universidad de Cuenca
record_format Article
series Maskana
spelling doaj.art-81dc00cc59f04227b6e066db435c2e332022-12-21T22:01:17ZengUniversidad de CuencaMaskana1390-61432477-88932018-06-0191105114https://doi.org/10.18537/mskn.09.01.10ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functionsMarco Gualsaquí0Iván Vizcaíno1Víctor Proaño2Marco Flores3Universidad de las Fuerzas Armadas (ESPE)Universidad de las Fuerzas Armadas (ESPE)Universidad de las Fuerzas Armadas (ESPE)Universidad de las Fuerzas Armadas (ESPE)The electrocardiogram signal (ECG) is a bio-signal used to determine cardiac health. However, different types of noise that commonly accompany these signals can hide valuable information for diagnosing disorders. The paper presents an experimental study to remove the noise in ECG signals using the Discrete Wavelet Transform (DWT) theory and a set of thresholds filters for efficient noise filtering. For the assessment process, we used ECG records from MIT-BIH Arrhythmia database (MITDB) and standardized noise signals (muscle activity and electrode-skin contact) database from the Noise Stress Test database. In addition to the ECG signals a white Gaussian noise present in electrical type signals was added. Furthermore, as a first step we considered baseline wander and power line interference reduction. The metrics used are the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error (RMSE), the Percent Root mean square Difference (PRD), and the Euclidian L2 Norm standard (L2N). Results reveal that there is not a single combination of filtering thresholds (function and value) to minimize all types of noise and interference present in ECG signals. Reason why an ECG denoising algorithm is proposed which allows choosing the appropriate combination (function-value) threshold, where the SNR values were the maximum and the error values were the minimum.https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/1858ECG signaldenoisingDWTfiltering treshold
spellingShingle Marco Gualsaquí
Iván Vizcaíno
Víctor Proaño
Marco Flores
ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions
Maskana
ECG signal
denoising
DWT
filtering treshold
title ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions
title_full ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions
title_fullStr ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions
title_full_unstemmed ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions
title_short ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions
title_sort ecg signal denoising using discrete wavelet transform a comparative analysis of threshold values and functions
topic ECG signal
denoising
DWT
filtering treshold
url https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/1858
work_keys_str_mv AT marcogualsaqui ecgsignaldenoisingusingdiscretewavelettransformacomparativeanalysisofthresholdvaluesandfunctions
AT ivanvizcaino ecgsignaldenoisingusingdiscretewavelettransformacomparativeanalysisofthresholdvaluesandfunctions
AT victorproano ecgsignaldenoisingusingdiscretewavelettransformacomparativeanalysisofthresholdvaluesandfunctions
AT marcoflores ecgsignaldenoisingusingdiscretewavelettransformacomparativeanalysisofthresholdvaluesandfunctions