Robust Heterojunctions of Metallic Alloy and Carbon Fiber-Reinforced Composite Induced by Laser Processing

The development of heterojunctions with a strong bonding interface between metals and non-metals has attracted much attention owing to their great potential for use in lightweight structures. Laser joining technology, which emerged as a fast and reliable method, has proven its feasibility and unique...

Full description

Bibliographic Details
Main Authors: Haipeng Wang, Peng Yan, Yingchun Guan
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/23/7469
Description
Summary:The development of heterojunctions with a strong bonding interface between metals and non-metals has attracted much attention owing to their great potential for use in lightweight structures. Laser joining technology, which emerged as a fast and reliable method, has proven its feasibility and unique advantages in joining metal to polymer matrix composites. Herein, an optimized laser joining configuration has been employed to realize high-quality joining of titanium alloy and carbon fiber-reinforced composite. Cross-sectional microstructures of laser-produced joints reveal that micro-bubbles near the interface have been effectively suppressed and eliminated due to the continual clamping pressure applied to the joined area during the joining process. Tensile tests suggest that the joint strength increases with structure density on a titanium alloy surface, and the greatest fracture strength of joints reaches more than 60 MPa even after experiencing a high–low temperature alternating aging test. For higher structure density (>95%), the joints fail by the fracture of parent plastics near the joined area due to the tensile-loading-induced peel stress at the edges of the overlap region. Otherwise, the joints fail by interfacial shear fracture with breakage when the structure density is lower than 91.5%. The obtained high-performance heterojunctions show great potential in the aerospace and automotive fields.
ISSN:1996-1944