Investigation of the global dynamics of two exponential-form difference equations systems

<p>In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms:</p> <p class=&q...

Full description

Bibliographic Details
Main Author: Merve Kara
Format: Article
Language:English
Published: AIMS Press 2023-10-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2023338?viewType=HTML
_version_ 1797449840980918272
author Merve Kara
author_facet Merve Kara
author_sort Merve Kara
collection DOAJ
description <p>In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms:</p> <p class="disp_formula"> $ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Psi_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Omega_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Upsilon_{n}}, \end{equation*} $ </p> <p class="disp_formula">$ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Upsilon_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Psi_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Omega_{n}}, \end{equation*} $</p> <p>for $ n\in \mathbb{N}_{0} $, where the initial conditions $ \Upsilon_{-j} $, $ \Psi_{-j} $, $ \Omega_{-j} $, for $ j\in\{0, 1\} $ and the parameters $ \Gamma_{i} $, $ \delta_{i} $, $ \Theta_{i} $ for $ i\in\{1, 2, 3\} $ are positive constants.</p>
first_indexed 2024-03-09T14:31:49Z
format Article
id doaj.art-81f7feff9a9f4a2b8060ad542c6dc981
institution Directory Open Access Journal
issn 2688-1594
language English
last_indexed 2024-03-09T14:31:49Z
publishDate 2023-10-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj.art-81f7feff9a9f4a2b8060ad542c6dc9812023-11-28T01:29:04ZengAIMS PressElectronic Research Archive2688-15942023-10-0131116697672410.3934/era.2023338Investigation of the global dynamics of two exponential-form difference equations systemsMerve Kara 0Department of Mathematics, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman 70100, Turkey<p>In this study, we investigate the boundedness, persistence of positive solutions, local and global stability of the unique positive equilibrium point and rate of convergence of positive solutions of the following difference equations systems of exponential forms:</p> <p class="disp_formula"> $ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Psi_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Omega_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Upsilon_{n}}, \end{equation*} $ </p> <p class="disp_formula">$ \begin{equation*} \Upsilon_{n+1} = \frac{\Gamma_{1}+\delta_{1}e^{-\Psi_{n-1}}}{\Theta_{1}+\Upsilon_{n}}, \ \Psi_{n+1} = \frac{\Gamma_{2}+\delta_{2}e^{-\Omega_{n-1}}}{\Theta_{2}+\Psi_{n}}, \ \Omega_{n+1} = \frac{\Gamma_{3}+\delta_{3}e^{-\Upsilon_{n-1}}}{\Theta_{3}+\Omega_{n}}, \end{equation*} $</p> <p>for $ n\in \mathbb{N}_{0} $, where the initial conditions $ \Upsilon_{-j} $, $ \Psi_{-j} $, $ \Omega_{-j} $, for $ j\in\{0, 1\} $ and the parameters $ \Gamma_{i} $, $ \delta_{i} $, $ \Theta_{i} $ for $ i\in\{1, 2, 3\} $ are positive constants.</p>https://www.aimspress.com/article/doi/10.3934/era.2023338?viewType=HTMLboundednesssystem of difference equationspersistencestability
spellingShingle Merve Kara
Investigation of the global dynamics of two exponential-form difference equations systems
Electronic Research Archive
boundedness
system of difference equations
persistence
stability
title Investigation of the global dynamics of two exponential-form difference equations systems
title_full Investigation of the global dynamics of two exponential-form difference equations systems
title_fullStr Investigation of the global dynamics of two exponential-form difference equations systems
title_full_unstemmed Investigation of the global dynamics of two exponential-form difference equations systems
title_short Investigation of the global dynamics of two exponential-form difference equations systems
title_sort investigation of the global dynamics of two exponential form difference equations systems
topic boundedness
system of difference equations
persistence
stability
url https://www.aimspress.com/article/doi/10.3934/era.2023338?viewType=HTML
work_keys_str_mv AT mervekara investigationoftheglobaldynamicsoftwoexponentialformdifferenceequationssystems