On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function <i>H</i><sub>4</sub>(<i>a</i>,<i>b</i>;<i>c</i>,<i>d</i>;<i>z</i><sub>1</sub>,<i>z</i><sub>2</sub>) Ratios

The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&qu...

Full description

Bibliographic Details
Main Authors: Tamara Antonova, Roman Dmytryshyn, Ilona-Anna Lutsiv, Serhii Sharyn
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/3/299
_version_ 1827751318010200064
author Tamara Antonova
Roman Dmytryshyn
Ilona-Anna Lutsiv
Serhii Sharyn
author_facet Tamara Antonova
Roman Dmytryshyn
Ilona-Anna Lutsiv
Serhii Sharyn
author_sort Tamara Antonova
collection DOAJ
description The paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula> ratios are constructed. The method employed is a two-dimensional generalization of the classical method of constructing of Gaussian continued fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios, uniformly converges to a holomorphic function of two variables on every compact subset of some domain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>⊂</mo><msup><mi mathvariant="double-struck">C</mi><mn>2</mn></msup><mo>,</mo></mrow></semantics></math></inline-formula> and that this function is an analytic continuation of this ratio in the domain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>.</mo></mrow></semantics></math></inline-formula> The application to the approximation of functions of two variables associated with Horn’s double hypergeometric series <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula> is considered, and the expression of solutions of some systems of partial differential equations is indicated.
first_indexed 2024-03-11T06:56:34Z
format Article
id doaj.art-820a29c3aaaf4ccb829a0e95f0318d21
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T06:56:34Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-820a29c3aaaf4ccb829a0e95f0318d212023-11-17T09:35:33ZengMDPI AGAxioms2075-16802023-03-0112329910.3390/axioms12030299On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function <i>H</i><sub>4</sub>(<i>a</i>,<i>b</i>;<i>c</i>,<i>d</i>;<i>z</i><sub>1</sub>,<i>z</i><sub>2</sub>) RatiosTamara Antonova0Roman Dmytryshyn1Ilona-Anna Lutsiv2Serhii Sharyn3Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 Stepan Bandera Str., 79013 Lviv, UkraineFaculty of Mathematics and Computer Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, UkraineFaculty of Mathematics and Computer Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, UkraineFaculty of Mathematics and Computer Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, UkraineThe paper deals with the problem of representation of Horn’s hypergeometric functions by branched continued fractions. The formal branched continued fraction expansions for three different Horn’s hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula> ratios are constructed. The method employed is a two-dimensional generalization of the classical method of constructing of Gaussian continued fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios, uniformly converges to a holomorphic function of two variables on every compact subset of some domain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>⊂</mo><msup><mi mathvariant="double-struck">C</mi><mn>2</mn></msup><mo>,</mo></mrow></semantics></math></inline-formula> and that this function is an analytic continuation of this ratio in the domain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>.</mo></mrow></semantics></math></inline-formula> The application to the approximation of functions of two variables associated with Horn’s double hypergeometric series <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula> is considered, and the expression of solutions of some systems of partial differential equations is indicated.https://www.mdpi.com/2075-1680/12/3/299Horn functionbranched continued fractionholomorphic functions of several complex variablesnumerical approximationconvergence
spellingShingle Tamara Antonova
Roman Dmytryshyn
Ilona-Anna Lutsiv
Serhii Sharyn
On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function <i>H</i><sub>4</sub>(<i>a</i>,<i>b</i>;<i>c</i>,<i>d</i>;<i>z</i><sub>1</sub>,<i>z</i><sub>2</sub>) Ratios
Axioms
Horn function
branched continued fraction
holomorphic functions of several complex variables
numerical approximation
convergence
title On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function <i>H</i><sub>4</sub>(<i>a</i>,<i>b</i>;<i>c</i>,<i>d</i>;<i>z</i><sub>1</sub>,<i>z</i><sub>2</sub>) Ratios
title_full On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function <i>H</i><sub>4</sub>(<i>a</i>,<i>b</i>;<i>c</i>,<i>d</i>;<i>z</i><sub>1</sub>,<i>z</i><sub>2</sub>) Ratios
title_fullStr On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function <i>H</i><sub>4</sub>(<i>a</i>,<i>b</i>;<i>c</i>,<i>d</i>;<i>z</i><sub>1</sub>,<i>z</i><sub>2</sub>) Ratios
title_full_unstemmed On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function <i>H</i><sub>4</sub>(<i>a</i>,<i>b</i>;<i>c</i>,<i>d</i>;<i>z</i><sub>1</sub>,<i>z</i><sub>2</sub>) Ratios
title_short On Some Branched Continued Fraction Expansions for Horn’s Hypergeometric Function <i>H</i><sub>4</sub>(<i>a</i>,<i>b</i>;<i>c</i>,<i>d</i>;<i>z</i><sub>1</sub>,<i>z</i><sub>2</sub>) Ratios
title_sort on some branched continued fraction expansions for horn s hypergeometric function i h i sub 4 sub i a i i b i i c i i d i i z i sub 1 sub i z i sub 2 sub ratios
topic Horn function
branched continued fraction
holomorphic functions of several complex variables
numerical approximation
convergence
url https://www.mdpi.com/2075-1680/12/3/299
work_keys_str_mv AT tamaraantonova onsomebranchedcontinuedfractionexpansionsforhornshypergeometricfunctionihisub4subiaiibiiciidiizisub1subizisub2subratios
AT romandmytryshyn onsomebranchedcontinuedfractionexpansionsforhornshypergeometricfunctionihisub4subiaiibiiciidiizisub1subizisub2subratios
AT ilonaannalutsiv onsomebranchedcontinuedfractionexpansionsforhornshypergeometricfunctionihisub4subiaiibiiciidiizisub1subizisub2subratios
AT serhiisharyn onsomebranchedcontinuedfractionexpansionsforhornshypergeometricfunctionihisub4subiaiibiiciidiizisub1subizisub2subratios