Substorm classification with the WINDMI model
The results of a genetic algorithm optimization of the WINDMI model using the Blanchard-McPherron substorm data set is presented. A key result from the large-scale computations used to search for convergence in the predictions over the database is the finding that there are three distinct types...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2003-01-01
|
Series: | Nonlinear Processes in Geophysics |
Online Access: | http://www.nonlin-processes-geophys.net/10/363/2003/npg-10-363-2003.pdf |
Summary: | The results of a genetic algorithm optimization of the WINDMI model using the Blanchard-McPherron substorm data set is presented. A key result from the large-scale computations used to search for convergence in the predictions over the database is the finding that there are three distinct types of <i>v<sub>x </sub>B<sub>s</sub> -AL </i>waveforms characterizing substorms. Type I and III substorms are given by the internally-triggered WINDMI model. The analysis reveals an additional type of event, called a type II substorm, that requires an external trigger as in the northward turning of the IMF model of Lyons (1995). We show that incorporating an external trigger, initiated by a fast northward turning of the IMF, into WINDMI, a low-dimensional model of substorms, yields improved predictions of substorm evolution in terms of the <i>AL</i> index. Intrinsic database uncertainties in the timing between the ground-based <i>AL </i>electrojet signal and the arrival time at the magnetopause of the IMF data measured by spacecraft in the solar wind prevent a sharp division between type I and II events. However, within these timing limitations we find that the fraction of events is roughly 40% type I, 40% type II, and 20% type III. |
---|---|
ISSN: | 1023-5809 1607-7946 |