Effect of the stacking fault energy on the mechanical properties of pure Cu and Cu-Al alloys subjected to severe plastic deformation

The effect of stacking fault energy (SFE) on the mechanical properties of pure Cu and alloys of Cu-2.2%Al and Cu-4.5%Al subjected to severe plastic deformation (SPD) was investigated. SPD was performed by equal channel angular pressing (ECAP) at room and cryogenic temperatures. It is established tha...

Full description

Bibliographic Details
Main Authors: Zaynullina Liliya, Alexandrov Igor, Wei Wei
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201712902032
Description
Summary:The effect of stacking fault energy (SFE) on the mechanical properties of pure Cu and alloys of Cu-2.2%Al and Cu-4.5%Al subjected to severe plastic deformation (SPD) was investigated. SPD was performed by equal channel angular pressing (ECAP) at room and cryogenic temperatures. It is established that the increase in the weight concentration of Al in the Cu matrix (a reduction of SFE) and decreasing the ECAP temperature leads to an increase of the strength characteristics. The observed tendency is caused by increasing of the role of deformation twinning.
ISSN:2261-236X