Summary: | The paper proposes an innovative method of locating objects for the Internet of Things (IoT). The proposed method allows the position of a fixed measuring sensor (MS) to be estimated using one mobile base station with a known position moving around the MS. The mathematical analysis of the method, and three algorithms - Newton's (NA), gradient descent (GD) and genetic (GA) - for solving the system of non-linear positional equations are presented. Next, the analysis of the position dilution of precision (PDoP) parameter for the proposed method, and the Cramér-Rao lower bound (CRLB), limiting the accuracy of the method, are presented. Finally, the results of complex simulation studies on the efficiency of the proposed method for various selected system parameters of the sensor network and convergence of the algorithms used to solve the system of non-linear equations are described.
|