Syndetic Sensitivity and Mean Sensitivity for Linear Operators

We study syndetic sensitivity and mean sensitivity for linear dynamical systems. For the syndetic sensitivity aspect, we obtain some properties of syndetic sensitivity for adjoint operators and left multiplication operators. We also show that there exists a linear dynamical system <inline-formula...

Full description

Bibliographic Details
Main Authors: Quanquan Yao, Peiyong Zhu
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/13/2796
_version_ 1797591290196525056
author Quanquan Yao
Peiyong Zhu
author_facet Quanquan Yao
Peiyong Zhu
author_sort Quanquan Yao
collection DOAJ
description We study syndetic sensitivity and mean sensitivity for linear dynamical systems. For the syndetic sensitivity aspect, we obtain some properties of syndetic sensitivity for adjoint operators and left multiplication operators. We also show that there exists a linear dynamical system <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo>×</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo>×</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is cofinitely sensitive but <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> are not syndetically sensitive. For the mean sensitivity aspect, we show that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is sensitive and not mean sensitive, where <i>Y</i> is a complex Banach space, the spectrum of <i>T</i> meets the unit circle. We also obtain some results regarding mean sensitive perturbations.
first_indexed 2024-03-11T01:35:19Z
format Article
id doaj.art-8219cb2c24ef4543953c631009d980c4
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T01:35:19Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-8219cb2c24ef4543953c631009d980c42023-11-18T17:01:27ZengMDPI AGMathematics2227-73902023-06-011113279610.3390/math11132796Syndetic Sensitivity and Mean Sensitivity for Linear OperatorsQuanquan Yao0Peiyong Zhu1School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, ChinaSchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, ChinaWe study syndetic sensitivity and mean sensitivity for linear dynamical systems. For the syndetic sensitivity aspect, we obtain some properties of syndetic sensitivity for adjoint operators and left multiplication operators. We also show that there exists a linear dynamical system <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo>×</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo>×</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is cofinitely sensitive but <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> are not syndetically sensitive. For the mean sensitivity aspect, we show that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is sensitive and not mean sensitive, where <i>Y</i> is a complex Banach space, the spectrum of <i>T</i> meets the unit circle. We also obtain some results regarding mean sensitive perturbations.https://www.mdpi.com/2227-7390/11/13/2796syndetically sensitivecofinitely sensitivemean sensitive
spellingShingle Quanquan Yao
Peiyong Zhu
Syndetic Sensitivity and Mean Sensitivity for Linear Operators
Mathematics
syndetically sensitive
cofinitely sensitive
mean sensitive
title Syndetic Sensitivity and Mean Sensitivity for Linear Operators
title_full Syndetic Sensitivity and Mean Sensitivity for Linear Operators
title_fullStr Syndetic Sensitivity and Mean Sensitivity for Linear Operators
title_full_unstemmed Syndetic Sensitivity and Mean Sensitivity for Linear Operators
title_short Syndetic Sensitivity and Mean Sensitivity for Linear Operators
title_sort syndetic sensitivity and mean sensitivity for linear operators
topic syndetically sensitive
cofinitely sensitive
mean sensitive
url https://www.mdpi.com/2227-7390/11/13/2796
work_keys_str_mv AT quanquanyao syndeticsensitivityandmeansensitivityforlinearoperators
AT peiyongzhu syndeticsensitivityandmeansensitivityforlinearoperators