Regularity of quasi-symbolic and bracket powers of Borel type ideals
In this paper, we show that the regularity of the q-th quasi-symbolic power I^{((q))} and the regularity of the q-th bracket power I^{[q]} of a monomial ideal of Borel type I, satisfy the relations reg(I^{((q))})\le q reg(I), respectively reg(I^{[q])}\ge q reg(I). Also, we give an upper bound for...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Conspress
2014-05-01
|
Series: | Romanian Journal of Mathematics and Computer Science |
Subjects: | |
Online Access: | http://www.rjm-cs.ro/Cimpoeas-2014.pdf |
_version_ | 1818537063729856512 |
---|---|
author | Mircea Cimpoeas |
author_facet | Mircea Cimpoeas |
author_sort | Mircea Cimpoeas |
collection | DOAJ |
description | In this paper, we show that the regularity of the q-th quasi-symbolic power I^{((q))} and the regularity of the q-th bracket power I^{[q]} of a monomial ideal of Borel type I, satisfy the relations reg(I^{((q))})\le q reg(I), respectively reg(I^{[q])}\ge q reg(I). Also, we give an upper bound for reg(I^{[q]}). |
first_indexed | 2024-12-11T18:45:56Z |
format | Article |
id | doaj.art-821d58d8200f4a38ab37775109d6e919 |
institution | Directory Open Access Journal |
issn | 2247-689X |
language | English |
last_indexed | 2024-12-11T18:45:56Z |
publishDate | 2014-05-01 |
publisher | Conspress |
record_format | Article |
series | Romanian Journal of Mathematics and Computer Science |
spelling | doaj.art-821d58d8200f4a38ab37775109d6e9192022-12-22T00:54:28ZengConspressRomanian Journal of Mathematics and Computer Science2247-689X2014-05-01417380Regularity of quasi-symbolic and bracket powers of Borel type idealsMircea Cimpoeas0Simion Stoilow Institute of Mathematics of the Romanian Academy, E-mail: mircea.cimpoeas@imar.roIn this paper, we show that the regularity of the q-th quasi-symbolic power I^{((q))} and the regularity of the q-th bracket power I^{[q]} of a monomial ideal of Borel type I, satisfy the relations reg(I^{((q))})\le q reg(I), respectively reg(I^{[q])}\ge q reg(I). Also, we give an upper bound for reg(I^{[q]}).http://www.rjm-cs.ro/Cimpoeas-2014.pdfMonomial idealsBorel type idealsMumford-Castelnuovo regularity |
spellingShingle | Mircea Cimpoeas Regularity of quasi-symbolic and bracket powers of Borel type ideals Romanian Journal of Mathematics and Computer Science Monomial ideals Borel type ideals Mumford-Castelnuovo regularity |
title | Regularity of quasi-symbolic and bracket powers of Borel type ideals |
title_full | Regularity of quasi-symbolic and bracket powers of Borel type ideals |
title_fullStr | Regularity of quasi-symbolic and bracket powers of Borel type ideals |
title_full_unstemmed | Regularity of quasi-symbolic and bracket powers of Borel type ideals |
title_short | Regularity of quasi-symbolic and bracket powers of Borel type ideals |
title_sort | regularity of quasi symbolic and bracket powers of borel type ideals |
topic | Monomial ideals Borel type ideals Mumford-Castelnuovo regularity |
url | http://www.rjm-cs.ro/Cimpoeas-2014.pdf |
work_keys_str_mv | AT mirceacimpoeas regularityofquasisymbolicandbracketpowersofboreltypeideals |