Sharp bounds for Gauss Lemniscate functions and Lemniscatic means

For $ a, b > 0 $ with $ a\neq b $, the Gauss lemniscate mean $ \mathcal{LM}(a, b) $ is defined by $ \begin{equation*} \mathcal{LM}(a,b) = \left\{\begin{array}{lll} \frac{\sqrt{a^2-b^2}}{\left[{ {\rm{arcsl}}}\left(\sqrt[4]{1-b^2/a^2}\right)\right]^2}, \ &a>b,\\ \frac{\sqrt{b^...

Full description

Bibliographic Details
Main Authors: Wei-Mao Qian, Miao-Kun Wang
Format: Article
Language:English
Published: AIMS Press 2021-05-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021437?viewType=HTML
_version_ 1828892239622832128
author Wei-Mao Qian
Miao-Kun Wang
author_facet Wei-Mao Qian
Miao-Kun Wang
author_sort Wei-Mao Qian
collection DOAJ
description For $ a, b > 0 $ with $ a\neq b $, the Gauss lemniscate mean $ \mathcal{LM}(a, b) $ is defined by $ \begin{equation*} \mathcal{LM}(a,b) = \left\{\begin{array}{lll} \frac{\sqrt{a^2-b^2}}{\left[{ {\rm{arcsl}}}\left(\sqrt[4]{1-b^2/a^2}\right)\right]^2}, \ &a>b,\\ \frac{\sqrt{b^2-a^2}}{\left[{ {\rm{arcslh}}}\left(\sqrt[4]{b^2/a^2-1}\right)\right]^2},\ &a<b, \end{array}\right. \end{equation*} $ where $ { {\rm{arcsl}}}(x) = \int_{0}^{x}\frac{dt}{\sqrt{1-t^4}} \ (|x| < 1) $ and $ {\rm{arcslh}}(x) = \int_{0}^{x}\frac{dt}{\sqrt{1+t^4}}\ (x\in \mathbb{R}) $ is the arc lemniscate sine and hyperbolic arc lemniscate sine functions respectively. In this paper, we mainly establish sharp two-parameter bounds for four symmetric and homogeneous means derived from $ \mathcal{LM}(a, b) $, $ \mathcal{LM}_{\mathcal{GA}}(a, b) = \mathcal{LM}(\mathcal{G}(a, b), \mathcal{A}(a, b)) $, $ \mathcal{LM}_{\mathcal{AG}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $, $ \mathcal{LM}_{\mathcal{AQ}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $ and $ \mathcal{LM}_{\mathcal{QA}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $. The obtained results lead to several asymptotical inequalities for Lemniscate functions. Here $ \mathcal{A}(a, b) = (a+b)/2 $, $ \mathcal{G}(a, b) = \sqrt{ab} $ and $ \mathcal{Q}(a, b) = \sqrt{(a^2+b^2)/2} $ are the classical arithmetic, geometric, and quadratic means.
first_indexed 2024-12-13T13:30:49Z
format Article
id doaj.art-821db16019aa4c94867cd429cf3d1606
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-13T13:30:49Z
publishDate 2021-05-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-821db16019aa4c94867cd429cf3d16062022-12-21T23:44:10ZengAIMS PressAIMS Mathematics2473-69882021-05-01677479749310.3934/math.2021437Sharp bounds for Gauss Lemniscate functions and Lemniscatic meansWei-Mao Qian0Miao-Kun Wang11. School of Continuing Education, Huzhou Vocational & Technical College (Huzhou Radio & Television University), Huzhou, 313000, China2. Department of Mathematics, Huzhou University, Huzhou 313000, ChinaFor $ a, b > 0 $ with $ a\neq b $, the Gauss lemniscate mean $ \mathcal{LM}(a, b) $ is defined by $ \begin{equation*} \mathcal{LM}(a,b) = \left\{\begin{array}{lll} \frac{\sqrt{a^2-b^2}}{\left[{ {\rm{arcsl}}}\left(\sqrt[4]{1-b^2/a^2}\right)\right]^2}, \ &a>b,\\ \frac{\sqrt{b^2-a^2}}{\left[{ {\rm{arcslh}}}\left(\sqrt[4]{b^2/a^2-1}\right)\right]^2},\ &a<b, \end{array}\right. \end{equation*} $ where $ { {\rm{arcsl}}}(x) = \int_{0}^{x}\frac{dt}{\sqrt{1-t^4}} \ (|x| < 1) $ and $ {\rm{arcslh}}(x) = \int_{0}^{x}\frac{dt}{\sqrt{1+t^4}}\ (x\in \mathbb{R}) $ is the arc lemniscate sine and hyperbolic arc lemniscate sine functions respectively. In this paper, we mainly establish sharp two-parameter bounds for four symmetric and homogeneous means derived from $ \mathcal{LM}(a, b) $, $ \mathcal{LM}_{\mathcal{GA}}(a, b) = \mathcal{LM}(\mathcal{G}(a, b), \mathcal{A}(a, b)) $, $ \mathcal{LM}_{\mathcal{AG}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $, $ \mathcal{LM}_{\mathcal{AQ}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $ and $ \mathcal{LM}_{\mathcal{QA}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $. The obtained results lead to several asymptotical inequalities for Lemniscate functions. Here $ \mathcal{A}(a, b) = (a+b)/2 $, $ \mathcal{G}(a, b) = \sqrt{ab} $ and $ \mathcal{Q}(a, b) = \sqrt{(a^2+b^2)/2} $ are the classical arithmetic, geometric, and quadratic means.https://www.aimspress.com/article/doi/10.3934/math.2021437?viewType=HTMLlemniscate functionlemniscatic meanarithmetic meangeometric meansharp bounds
spellingShingle Wei-Mao Qian
Miao-Kun Wang
Sharp bounds for Gauss Lemniscate functions and Lemniscatic means
AIMS Mathematics
lemniscate function
lemniscatic mean
arithmetic mean
geometric mean
sharp bounds
title Sharp bounds for Gauss Lemniscate functions and Lemniscatic means
title_full Sharp bounds for Gauss Lemniscate functions and Lemniscatic means
title_fullStr Sharp bounds for Gauss Lemniscate functions and Lemniscatic means
title_full_unstemmed Sharp bounds for Gauss Lemniscate functions and Lemniscatic means
title_short Sharp bounds for Gauss Lemniscate functions and Lemniscatic means
title_sort sharp bounds for gauss lemniscate functions and lemniscatic means
topic lemniscate function
lemniscatic mean
arithmetic mean
geometric mean
sharp bounds
url https://www.aimspress.com/article/doi/10.3934/math.2021437?viewType=HTML
work_keys_str_mv AT weimaoqian sharpboundsforgausslemniscatefunctionsandlemniscaticmeans
AT miaokunwang sharpboundsforgausslemniscatefunctionsandlemniscaticmeans