Integrated physical enhanced recovery method for high-viscosity oil reservoirs

The physical methods of enhanced oil recovery using electromagnetic fields are studied in this paper. Purpose of the work is to study the dependence of the main quantities that determine the volume of filtered oil, including the viscosity of oil, on the parameters (temperature, intensity and frequen...

Full description

Bibliographic Details
Main Authors: Khudaiberdiev Aziz, Kosianov Petr
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/20/e3sconf_emmft2020_09012.pdf
Description
Summary:The physical methods of enhanced oil recovery using electromagnetic fields are studied in this paper. Purpose of the work is to study the dependence of the main quantities that determine the volume of filtered oil, including the viscosity of oil, on the parameters (temperature, intensity and frequency) of thermal and electromagnetic fields, and optimize these parameters for maximum oil recovery factor using electric fields and steam treatment of the formation.It is proposed to combine the most effective and environmentally friendly methods to increase oil production. In the developed technique, methods of converting steam energy are used to create a torque of the drilling device with simultaneous steam treatment of the bottomhole zone of the reservoir. As well as the impact of an alternating electromagnetic field on the reservoir matrix and interstratal liquid fluids to create currents, increase the mobility of molecules of liquid fluids, and, as a consequence, increase the temperature and lower the viscosity of oil, which will increase oil recovery. As a result of numerous experimental experiments carried out using the original setup in the laboratory of the branch of the Tyumen Industrial University in Nizhnevartovsk, it was shown that a decrease in viscosity is observed only when exposed to simultaneous thermal and electromagnetic fields.
ISSN:2267-1242