The Optimized Production of 5-(Hydroxymethyl)furfural and Related Products from Spent Coffee Grounds

The increasing consumption of coffee worldwide has led to higher amounts of spent coffee grounds (SCG) being produced which are generally disposed of in landfill or used as compost. However, the wide range of molecules present in SCG such as saccharides, lignin, lipids and proteins give this biomass...

Full description

Bibliographic Details
Main Authors: André Prates Pereira, Timothy J. Woodman, Paraj Brahmbhatt, Christopher J. Chuck
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/16/3369
Description
Summary:The increasing consumption of coffee worldwide has led to higher amounts of spent coffee grounds (SCG) being produced which are generally disposed of in landfill or used as compost. However, the wide range of molecules present in SCG such as saccharides, lignin, lipids and proteins give this biomass source a large chemical functionality. In this work, SCG were fractionated to separate the components into three separate portions for further valorization; these were hemicellulose-enriched fractions (HEF), lignin-enriched fraction (LEF) and cellulose-enriched fraction (CEF). HEF was effectively used in the growth of the oleaginous yeast <i>Metschnikowia pulcherrima</i>, additionally, the C<sub>6</sub> sugars present in this fraction suggests that it can be used in the production of 5-hydroxymethylfurfural (HMF). The LEF had a considerable high heating value (HHV) and would be suitable as a biofuel component for combustion. CEF was efficiently used in the production of HMF as 0.35 g of this product were obtained from 10 g of SCG. Such results demonstrate that SCG can be effectively used in the production of HMF within a biorefinery concept.
ISSN:2076-3417