String corrected spacetimes and SU(N)-structure manifolds
Using an effective field theory approach and the language of SU(N)-structures, we study higher derivative corrections to the supersymmetry constraints for compactifications of string or M-theory to Minkowski space. Our analysis is done entirely in the target space and is thus very general, and does...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2015-09-01
|
Series: | Nuclear Physics B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0550321315001364 |
Summary: | Using an effective field theory approach and the language of SU(N)-structures, we study higher derivative corrections to the supersymmetry constraints for compactifications of string or M-theory to Minkowski space. Our analysis is done entirely in the target space and is thus very general, and does not rely on theory-dependent details such as the amount of worldsheet supersymmetry. For manifolds of real dimension n<4 we show that internal geometry remains flat and uncorrected. For n=4,6, Kähler manifolds with SU(N)-holonomy can become corrected to SU(N)-structure, while preserving supersymmetry, once corrections are included. |
---|---|
ISSN: | 0550-3213 1873-1562 |