A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $

A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured <sup>...

Full description

Bibliographic Details
Main Authors: Dan Yang, Jinchao Yu, Jingjing Zhang, Xiaoying Zhu
Format: Article
Language:English
Published: AIMS Press 2022-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022003?viewType=HTML
_version_ 1798035321553682432
author Dan Yang
Jinchao Yu
Jingjing Zhang
Xiaoying Zhu
author_facet Dan Yang
Jinchao Yu
Jingjing Zhang
Xiaoying Zhu
author_sort Dan Yang
collection DOAJ
description A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>: any hypersurface satisfying $ \Delta \vec{H} = \lambda \vec{H} $ in pseudo-Euclidean space $ \mathbb E_{s}^{n+1} $ has constant mean curvature. This paper will give further support evidences to this conjecture by proving that a linear Weingarten hypersurface $ M^{n}_{r} $ in $ \mathbb E^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda \vec{H} $ has constant mean curvature if $ M^{n}_{r} $ has diagonalizable shape operator with less than seven distinct principal curvatures.
first_indexed 2024-04-11T20:56:37Z
format Article
id doaj.art-8258531450cf4a748a7d7a1a6b9ca8f8
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-11T20:56:37Z
publishDate 2022-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-8258531450cf4a748a7d7a1a6b9ca8f82022-12-22T04:03:39ZengAIMS PressAIMS Mathematics2473-69882022-01-0171395310.3934/math.2022003A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $Dan Yang0Jinchao Yu1Jingjing Zhang2Xiaoying Zhu31. School of Mathematics, Liaoning University, Shenyang 110044, China1. School of Mathematics, Liaoning University, Shenyang 110044, China2. School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200072, China1. School of Mathematics, Liaoning University, Shenyang 110044, ChinaA nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>: any hypersurface satisfying $ \Delta \vec{H} = \lambda \vec{H} $ in pseudo-Euclidean space $ \mathbb E_{s}^{n+1} $ has constant mean curvature. This paper will give further support evidences to this conjecture by proving that a linear Weingarten hypersurface $ M^{n}_{r} $ in $ \mathbb E^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda \vec{H} $ has constant mean curvature if $ M^{n}_{r} $ has diagonalizable shape operator with less than seven distinct principal curvatures.https://www.aimspress.com/article/doi/10.3934/math.2022003?viewType=HTMLproper mean curvature vectorlinear weingarten hypersurfacesprincipal curvatures
spellingShingle Dan Yang
Jinchao Yu
Jingjing Zhang
Xiaoying Zhu
A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $
AIMS Mathematics
proper mean curvature vector
linear weingarten hypersurfaces
principal curvatures
title A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $
title_full A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $
title_fullStr A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $
title_full_unstemmed A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $
title_short A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $
title_sort class of hypersurfaces in mathbb e n 1 s satisfying delta vec h lambda vec h
topic proper mean curvature vector
linear weingarten hypersurfaces
principal curvatures
url https://www.aimspress.com/article/doi/10.3934/math.2022003?viewType=HTML
work_keys_str_mv AT danyang aclassofhypersurfacesinmathbben1ssatisfyingdeltavechlambdavech
AT jinchaoyu aclassofhypersurfacesinmathbben1ssatisfyingdeltavechlambdavech
AT jingjingzhang aclassofhypersurfacesinmathbben1ssatisfyingdeltavechlambdavech
AT xiaoyingzhu aclassofhypersurfacesinmathbben1ssatisfyingdeltavechlambdavech
AT danyang classofhypersurfacesinmathbben1ssatisfyingdeltavechlambdavech
AT jinchaoyu classofhypersurfacesinmathbben1ssatisfyingdeltavechlambdavech
AT jingjingzhang classofhypersurfacesinmathbben1ssatisfyingdeltavechlambdavech
AT xiaoyingzhu classofhypersurfacesinmathbben1ssatisfyingdeltavechlambdavech