A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $
A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured <sup>...
Main Authors: | Dan Yang, Jinchao Yu, Jingjing Zhang, Xiaoying Zhu |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2022-01-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.2022003?viewType=HTML |
Similar Items
-
Weingarten spacelike hypersurfaces in a de Sitter space
by: Chen Junfeng, et al.
Published: (2012-05-01) -
Curvatures of hypersurfaces
by: Kazimieras Navickis
Published: (2010-12-01) -
Symmetry of hypersurfaces and the Hopf Lemma
by: YanYan Li
Published: (2023-10-01) -
Bernstein-type theorems in hypersurfaces with constant mean curvature
by: MANFREDO P. DO CARMO, et al.
Published: (2000-09-01) -
Pinched hypersurfaces are compact
by: Bourni Theodora, et al.
Published: (2023-03-01)