A Generalization of Multifractional Brownian Motion

In this article, some properties of multifractional Brownian motion (MFBM) are discussed. It is shown that it has persistence of signs long range dependence (LRD) and persistence of magnitudes LRD properties. A generalization called here <i>n</i>th order multifractional Brownian motion (...

Full description

Bibliographic Details
Main Authors: Neha Gupta, Arun Kumar, Nikolai Leonenko
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/2/74
_version_ 1827654869470674944
author Neha Gupta
Arun Kumar
Nikolai Leonenko
author_facet Neha Gupta
Arun Kumar
Nikolai Leonenko
author_sort Neha Gupta
collection DOAJ
description In this article, some properties of multifractional Brownian motion (MFBM) are discussed. It is shown that it has persistence of signs long range dependence (LRD) and persistence of magnitudes LRD properties. A generalization called here <i>n</i>th order multifractional Brownian motion (<i>n</i>-MFBM) that allows to take the functional parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> values in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> is discussed. Two representations of the <i>n</i>-MFBM are given and their relationship with each other is obtained.
first_indexed 2024-03-09T21:55:50Z
format Article
id doaj.art-82632c9190ce4befa30692ea6d4e2e17
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T21:55:50Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-82632c9190ce4befa30692ea6d4e2e172023-11-23T19:58:47ZengMDPI AGFractal and Fractional2504-31102022-01-01627410.3390/fractalfract6020074A Generalization of Multifractional Brownian MotionNeha Gupta0Arun Kumar1Nikolai Leonenko2Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, IndiaDepartment of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, IndiaCardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UKIn this article, some properties of multifractional Brownian motion (MFBM) are discussed. It is shown that it has persistence of signs long range dependence (LRD) and persistence of magnitudes LRD properties. A generalization called here <i>n</i>th order multifractional Brownian motion (<i>n</i>-MFBM) that allows to take the functional parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> values in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> is discussed. Two representations of the <i>n</i>-MFBM are given and their relationship with each other is obtained.https://www.mdpi.com/2504-3110/6/2/74multifractional Brownian motionlong range dependenceharmonizable representationHurst parameterHölder continuity
spellingShingle Neha Gupta
Arun Kumar
Nikolai Leonenko
A Generalization of Multifractional Brownian Motion
Fractal and Fractional
multifractional Brownian motion
long range dependence
harmonizable representation
Hurst parameter
Hölder continuity
title A Generalization of Multifractional Brownian Motion
title_full A Generalization of Multifractional Brownian Motion
title_fullStr A Generalization of Multifractional Brownian Motion
title_full_unstemmed A Generalization of Multifractional Brownian Motion
title_short A Generalization of Multifractional Brownian Motion
title_sort generalization of multifractional brownian motion
topic multifractional Brownian motion
long range dependence
harmonizable representation
Hurst parameter
Hölder continuity
url https://www.mdpi.com/2504-3110/6/2/74
work_keys_str_mv AT nehagupta ageneralizationofmultifractionalbrownianmotion
AT arunkumar ageneralizationofmultifractionalbrownianmotion
AT nikolaileonenko ageneralizationofmultifractionalbrownianmotion
AT nehagupta generalizationofmultifractionalbrownianmotion
AT arunkumar generalizationofmultifractionalbrownianmotion
AT nikolaileonenko generalizationofmultifractionalbrownianmotion