The Fur regulon in anaerobically grown <it>Salmonella enterica sv</it>. Typhimurium: identification of new Fur targets

<p>Abstract</p> <p>Background</p> <p>The Ferric uptake regulator (Fur) is a transcriptional regulator that controls iron homeostasis in bacteria. Although the regulatory role of Fur in <it>Escherichia coli </it>is well characterized, most of the studies were...

Full description

Bibliographic Details
Main Authors: Porwollik Steffen, Fink Ryan C, Troxell Bryan, McClelland Michael, Hassan Hosni M
Format: Article
Language:English
Published: BMC 2011-10-01
Series:BMC Microbiology
Online Access:http://www.biomedcentral.com/1471-2180/11/236
Description
Summary:<p>Abstract</p> <p>Background</p> <p>The Ferric uptake regulator (Fur) is a transcriptional regulator that controls iron homeostasis in bacteria. Although the regulatory role of Fur in <it>Escherichia coli </it>is well characterized, most of the studies were conducted under routine culture conditions, i.e., in ambient oxygen concentration. To reveal potentially novel aspects of the Fur regulon in <it>Salmonella enterica </it>serovar Typhimurium under oxygen conditions similar to that encountered in the host, we compared the transcriptional profiles of the virulent wild-type strain (ATCC 14028s) and its isogenic Δ<it>fur </it>strain under anaerobic conditions.</p> <p>Results</p> <p>Microarray analysis of anaerobically grown Δ<it>fur S</it>. Typhimurium identified 298 differentially expressed genes. Expression of several genes controlled by Fnr and NsrR appeared to be also dependent on Fur. Furthermore, Fur was required for the activity of the cytoplasmic superoxide disumutases (MnSOD and FeSOD). The regulation of FeSOD gene, <it>sodB</it>, occurred via small RNAs (i.e., the <it>ryhB </it>homologs, <it>rfrA </it>and <it>rfrB</it>) with the aid of the RNA chaperone Hfq. The transcription of <it>sodA </it>was increased in Δ<it>fur; </it>however, the enzyme was inactive due to the incorporation of iron instead of manganese in SodA. Additionally, in Δ<it>fur</it>, the expression of the gene coding for the ferritin-like protein (<it>ftnB</it>) was down-regulated, while the transcription of the gene coding for the nitric oxide (NO<sup>·</sup>) detoxifying flavohemoglobin (<it>hmpA</it>) was up-regulated. The promoters of <it>ftnB </it>and <it>hmpA </it>do not contain recognized Fur binding motifs, which indicated their probable indirect regulation by Fur. However, Fur activation of <it>ftnB </it>was independent of Fnr. In addition, the expression of the gene coding for the histone-like protein, H-NS (<it>hns</it>) was increased in Δ<it>fur</it>. This may explain the observed down-regulation of the <it>tdc </it>operon, responsible for the anaerobic degradation of threonine, and <it>ftnB </it>in Δ<it>fur</it>.</p> <p>Conclusions</p> <p>This study determined that Fur is a positive factor in <it>ftnB </it>regulation, while serving to repress the expression of <it>hmpA</it>. Furthermore, Fur is required for the proper expression and activation of the antioxidant enzymes, FeSOD and MnSOD. Finally, this work identified twenty-six new targets of Fur regulation, and demonstrates that H-NS repressed genes are down-regulated in Δ<it>fur</it>.</p>
ISSN:1471-2180