A distribution approach to finite-size corrections in Bethe Ansatz solvable models

We present a new and efficient method for deriving finite-size effects in statistical physics models solvable by Bethe Ansatz. It is based on the study of the functional that maps a function to the sum of its evaluations over the Bethe roots. A simple and powerful constraint is derived when applying...

Full description

Bibliographic Details
Main Authors: Etienne Granet, Jesper Lykke Jacobsen, Hubert Saleur
Format: Article
Language:English
Published: Elsevier 2018-09-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321318301585
_version_ 1818454218937204736
author Etienne Granet
Jesper Lykke Jacobsen
Hubert Saleur
author_facet Etienne Granet
Jesper Lykke Jacobsen
Hubert Saleur
author_sort Etienne Granet
collection DOAJ
description We present a new and efficient method for deriving finite-size effects in statistical physics models solvable by Bethe Ansatz. It is based on the study of the functional that maps a function to the sum of its evaluations over the Bethe roots. A simple and powerful constraint is derived when applying this functional to infinitely derivable test functions with compact support, that generalizes then to more general test functions.The method is presented in the context of the simple spin-1/2 XXZ chain for which we derive the finite-size corrections to leading eigenvalues of the Hamiltonian for any configuration of Bethe numbers with real Bethe roots. The expected results for the central charge and conformal dimensions are recovered.
first_indexed 2024-12-14T21:51:24Z
format Article
id doaj.art-826774b98cbf4dc6bc100a1d6924173e
institution Directory Open Access Journal
issn 0550-3213
language English
last_indexed 2024-12-14T21:51:24Z
publishDate 2018-09-01
publisher Elsevier
record_format Article
series Nuclear Physics B
spelling doaj.art-826774b98cbf4dc6bc100a1d6924173e2022-12-21T22:46:14ZengElsevierNuclear Physics B0550-32132018-09-0193496117A distribution approach to finite-size corrections in Bethe Ansatz solvable modelsEtienne Granet0Jesper Lykke Jacobsen1Hubert Saleur2Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette, France; Laboratoire de physique théorique, Département de physique de l'ENS, École Normale Supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France; Corresponding author.Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette, France; Laboratoire de physique théorique, Département de physique de l'ENS, École Normale Supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, CNRS, Laboratoire de Physique Théorique (LPT ENS), 75005 Paris, FranceInstitut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette, France; USC Physics Department, Los Angeles CA 90089, USAWe present a new and efficient method for deriving finite-size effects in statistical physics models solvable by Bethe Ansatz. It is based on the study of the functional that maps a function to the sum of its evaluations over the Bethe roots. A simple and powerful constraint is derived when applying this functional to infinitely derivable test functions with compact support, that generalizes then to more general test functions.The method is presented in the context of the simple spin-1/2 XXZ chain for which we derive the finite-size corrections to leading eigenvalues of the Hamiltonian for any configuration of Bethe numbers with real Bethe roots. The expected results for the central charge and conformal dimensions are recovered.http://www.sciencedirect.com/science/article/pii/S0550321318301585
spellingShingle Etienne Granet
Jesper Lykke Jacobsen
Hubert Saleur
A distribution approach to finite-size corrections in Bethe Ansatz solvable models
Nuclear Physics B
title A distribution approach to finite-size corrections in Bethe Ansatz solvable models
title_full A distribution approach to finite-size corrections in Bethe Ansatz solvable models
title_fullStr A distribution approach to finite-size corrections in Bethe Ansatz solvable models
title_full_unstemmed A distribution approach to finite-size corrections in Bethe Ansatz solvable models
title_short A distribution approach to finite-size corrections in Bethe Ansatz solvable models
title_sort distribution approach to finite size corrections in bethe ansatz solvable models
url http://www.sciencedirect.com/science/article/pii/S0550321318301585
work_keys_str_mv AT etiennegranet adistributionapproachtofinitesizecorrectionsinbetheansatzsolvablemodels
AT jesperlykkejacobsen adistributionapproachtofinitesizecorrectionsinbetheansatzsolvablemodels
AT hubertsaleur adistributionapproachtofinitesizecorrectionsinbetheansatzsolvablemodels
AT etiennegranet distributionapproachtofinitesizecorrectionsinbetheansatzsolvablemodels
AT jesperlykkejacobsen distributionapproachtofinitesizecorrectionsinbetheansatzsolvablemodels
AT hubertsaleur distributionapproachtofinitesizecorrectionsinbetheansatzsolvablemodels