Development of Real-Time Implementation of a Wind Power Generation System with Modular Multilevel Converters for Hardware in the Loop Simulation Using MATLAB/Simulink

In this study, we propose a wind power generation system model for operating modular multilevel converter (MMC) in a hardware-in-the-loop simulation (HILS) application. The application of the MMC is a system that connects wind power to a grid through high-voltage direct current (HVDC) in the form of...

Full description

Bibliographic Details
Main Authors: Dong-Cheol Shin, Dong-Myung Lee
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/4/606
Description
Summary:In this study, we propose a wind power generation system model for operating modular multilevel converter (MMC) in a hardware-in-the-loop simulation (HILS) application. The application of the MMC is a system that connects wind power to a grid through high-voltage direct current (HVDC) in the form of back-to-back connected MMCs, whereas a HILS is a system used to test or develop hardware or a software algorithm with real time. A real-time operation model of the MMC is required to conduct a HILS experiment. Although some studies have introduced the HILS model of MMCs for grid connection using PSCAD/EMTDC, it is difficult to find a study in the literature on the model using Matlab/Simulink, which is widely used for power electronic simulation. Hence, in this paper, we propose a real-time implementation model employing a detailed equivalent model (DEM) using MATLAB/Simulink. The equivalent model of both wind power generation system and MMC are presented in this paper. In addition, we describe how to implement components such as a variable resistor that is not provided in the Simulink’s library. The feasibility of the proposed model is demonstrated with real-time operation of a wind power generation system.
ISSN:2079-9292