Study on Polymer Electrolyte Fuel Cells with Nonhumidification Using Metal Foam in Dead-Ended Operation

Portable power sources have attracted increasing interest and attention, with a focus on the reduction of the system volume. Thus, portable power sources often use polymer electrolyte fuel cell (PEFC) systems with dead-ended operation—which are simpler and more fuel-efficient than conventi...

Full description

Bibliographic Details
Main Authors: Myo-Eun Kim, Young-Jun Sohn
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/5/1238
Description
Summary:Portable power sources have attracted increasing interest and attention, with a focus on the reduction of the system volume. Thus, portable power sources often use polymer electrolyte fuel cell (PEFC) systems with dead-ended operation—which are simpler and more fuel-efficient than conventional PEFC systems. In these systems, the fuel may be supplied under nonhumidified conditions to minimize the balance of plant (BOP). In recent studies, metal foams have been used as flow fields to improve fuel diffusion and water management in the PEFC; the performance can be compared to that of a conventional channel. This study compared the performance and water management ability of channel and metal foam flow fields under nonhumidified conditions with dead-ended operation. The results demonstrate that the average output was similar for both flow fields. In terms of fuel efficiency, the PEFC with the metal foam could be operated for a significantly longer time without purging than that with the channel.
ISSN:1996-1073