Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance

Abstract Background Artemisinin-based combination therapies are the first line of treatment for Plasmodium falciparum infections worldwide, but artemisinin resistance has risen rapidly in Southeast Asia over the past decade. Mutations in the kelch13 gene have been implicated in this resistance. We u...

Full description

Bibliographic Details
Main Authors: Gustavo C. Cerqueira, Ian H. Cheeseman, Steve F. Schaffner, Shalini Nair, Marina McDew-White, Aung Pyae Phyo, Elizabeth A. Ashley, Alexandre Melnikov, Peter Rogov, Bruce W. Birren, François Nosten, Timothy J. C. Anderson, Daniel E. Neafsey
Format: Article
Language:English
Published: BMC 2017-04-01
Series:Genome Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13059-017-1204-4
_version_ 1819055907879780352
author Gustavo C. Cerqueira
Ian H. Cheeseman
Steve F. Schaffner
Shalini Nair
Marina McDew-White
Aung Pyae Phyo
Elizabeth A. Ashley
Alexandre Melnikov
Peter Rogov
Bruce W. Birren
François Nosten
Timothy J. C. Anderson
Daniel E. Neafsey
author_facet Gustavo C. Cerqueira
Ian H. Cheeseman
Steve F. Schaffner
Shalini Nair
Marina McDew-White
Aung Pyae Phyo
Elizabeth A. Ashley
Alexandre Melnikov
Peter Rogov
Bruce W. Birren
François Nosten
Timothy J. C. Anderson
Daniel E. Neafsey
author_sort Gustavo C. Cerqueira
collection DOAJ
description Abstract Background Artemisinin-based combination therapies are the first line of treatment for Plasmodium falciparum infections worldwide, but artemisinin resistance has risen rapidly in Southeast Asia over the past decade. Mutations in the kelch13 gene have been implicated in this resistance. We used longitudinal genomic surveillance to detect signals in kelch13 and other loci that contribute to artemisinin or partner drug resistance. We retrospectively sequenced the genomes of 194 P. falciparum isolates from five sites in Northwest Thailand, over the period of a rapid increase in the emergence of artemisinin resistance (2001–2014). Results We evaluate statistical metrics for temporal change in the frequency of individual SNPs, assuming that SNPs associated with resistance increase in frequency over this period. After Kelch13-C580Y, the strongest temporal change is seen at a SNP in phosphatidylinositol 4-kinase, which is involved in a pathway recently implicated in artemisinin resistance. Furthermore, other loci exhibit strong temporal signatures which warrant further investigation for involvement in artemisinin resistance evolution. Through genome-wide association analysis we identify a variant in a kelch domain-containing gene on chromosome 10 that may epistatically modulate artemisinin resistance. Conclusions This analysis demonstrates the potential of a longitudinal genomic surveillance approach to detect resistance-associated gene loci to improve our mechanistic understanding of how resistance develops. Evidence for additional genomic regions outside of the kelch13 locus associated with artemisinin-resistant parasites may yield new molecular markers for resistance surveillance, which may be useful in efforts to reduce the emergence or spread of artemisinin resistance in African parasite populations.
first_indexed 2024-12-21T13:14:59Z
format Article
id doaj.art-827f2a0a516745d098ef8cbb6210961b
institution Directory Open Access Journal
issn 1474-760X
language English
last_indexed 2024-12-21T13:14:59Z
publishDate 2017-04-01
publisher BMC
record_format Article
series Genome Biology
spelling doaj.art-827f2a0a516745d098ef8cbb6210961b2022-12-21T19:02:46ZengBMCGenome Biology1474-760X2017-04-0118111310.1186/s13059-017-1204-4Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistanceGustavo C. Cerqueira0Ian H. Cheeseman1Steve F. Schaffner2Shalini Nair3Marina McDew-White4Aung Pyae Phyo5Elizabeth A. Ashley6Alexandre Melnikov7Peter Rogov8Bruce W. Birren9François Nosten10Timothy J. C. Anderson11Daniel E. Neafsey12Broad Institute of MIT and HarvardTexas Biomedical Research InstituteBroad Institute of MIT and HarvardTexas Biomedical Research InstituteTexas Biomedical Research InstituteShoklo Malaria Research Unit, Mahidol UniversityShoklo Malaria Research Unit, Mahidol UniversityBroad Institute of MIT and HarvardBroad Institute of MIT and HarvardBroad Institute of MIT and HarvardShoklo Malaria Research Unit, Mahidol UniversityTexas Biomedical Research InstituteBroad Institute of MIT and HarvardAbstract Background Artemisinin-based combination therapies are the first line of treatment for Plasmodium falciparum infections worldwide, but artemisinin resistance has risen rapidly in Southeast Asia over the past decade. Mutations in the kelch13 gene have been implicated in this resistance. We used longitudinal genomic surveillance to detect signals in kelch13 and other loci that contribute to artemisinin or partner drug resistance. We retrospectively sequenced the genomes of 194 P. falciparum isolates from five sites in Northwest Thailand, over the period of a rapid increase in the emergence of artemisinin resistance (2001–2014). Results We evaluate statistical metrics for temporal change in the frequency of individual SNPs, assuming that SNPs associated with resistance increase in frequency over this period. After Kelch13-C580Y, the strongest temporal change is seen at a SNP in phosphatidylinositol 4-kinase, which is involved in a pathway recently implicated in artemisinin resistance. Furthermore, other loci exhibit strong temporal signatures which warrant further investigation for involvement in artemisinin resistance evolution. Through genome-wide association analysis we identify a variant in a kelch domain-containing gene on chromosome 10 that may epistatically modulate artemisinin resistance. Conclusions This analysis demonstrates the potential of a longitudinal genomic surveillance approach to detect resistance-associated gene loci to improve our mechanistic understanding of how resistance develops. Evidence for additional genomic regions outside of the kelch13 locus associated with artemisinin-resistant parasites may yield new molecular markers for resistance surveillance, which may be useful in efforts to reduce the emergence or spread of artemisinin resistance in African parasite populations.http://link.springer.com/article/10.1186/s13059-017-1204-4MalariaDrug resistanceGenomicsSurveillanceEpistasis
spellingShingle Gustavo C. Cerqueira
Ian H. Cheeseman
Steve F. Schaffner
Shalini Nair
Marina McDew-White
Aung Pyae Phyo
Elizabeth A. Ashley
Alexandre Melnikov
Peter Rogov
Bruce W. Birren
François Nosten
Timothy J. C. Anderson
Daniel E. Neafsey
Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance
Genome Biology
Malaria
Drug resistance
Genomics
Surveillance
Epistasis
title Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance
title_full Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance
title_fullStr Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance
title_full_unstemmed Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance
title_short Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance
title_sort longitudinal genomic surveillance of plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance
topic Malaria
Drug resistance
Genomics
Surveillance
Epistasis
url http://link.springer.com/article/10.1186/s13059-017-1204-4
work_keys_str_mv AT gustavoccerqueira longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT ianhcheeseman longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT stevefschaffner longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT shalininair longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT marinamcdewwhite longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT aungpyaephyo longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT elizabethaashley longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT alexandremelnikov longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT peterrogov longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT brucewbirren longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT francoisnosten longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT timothyjcanderson longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance
AT danieleneafsey longitudinalgenomicsurveillanceofplasmodiumfalciparummalariaparasitesrevealscomplexgenomicarchitectureofemergingartemisininresistance