Thermal and Structural Properties of High Density Polyethylene/Carbon Nanotube Nanocomposites: A Comparison Study

The effects of functionalization of carbon nanotubes on the properties of nanocomposite sheets prepared from high-density polyethylene (HDPE) and carbon nanotubes (CNTs) were investigated. Carbon nanotubes were first oxidized, followed by amine group functionalization. The Fourier transform-infrared...

Full description

Bibliographic Details
Main Authors: Ayat Bozeya, Yahia F. Makableh, Rund Abu-Zurayk, Aya Khalaf, Abeer Al Bawab
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Chemosensors
Subjects:
Online Access:https://www.mdpi.com/2227-9040/9/6/136
Description
Summary:The effects of functionalization of carbon nanotubes on the properties of nanocomposite sheets prepared from high-density polyethylene (HDPE) and carbon nanotubes (CNTs) were investigated. Carbon nanotubes were first oxidized, followed by amine group functionalization. The Fourier transform-infrared (FTIR) spectroscopy results confirm the presence of oxygenated and amide groups at the surface of the CNTs after each treatment. The HDPE/CNT nanocomposites sheets were prepared using a melt compounding method. Six types of CNTs were used; pristine Single-walled Carbon nanotubes (SWCNT) and pristine Multi-walled Carbon nanotubes (MWCNT), oxidized (O-SWCNT and O-MWCNT) and amide (Amide-SWCNT and Amide-MWCNT). All prepared nanocomposite sheets were characterized using Thermal gravimetric analysis (TGA), Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscope (SEM). TGA results measured increased thermal stability of the polymer with the addition of CNTs, O-MWCNT showed the best enhancement. XRD measurements confirmed that the addition of CNTs did not change the crystal structure of the polymer, although the crystallinity was decreased. The maximum crystallinity decrease resulted from O-SWNTs addition to the polymer matrix. SEM imaging showed that oxidized and functionalized CNTs have more even dispersion in the polymer matrix compared with pristine CNTs.
ISSN:2227-9040