Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.

BACKGROUND:Mesenchymal stromal cells (MSC) hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cell...

Full description

Bibliographic Details
Main Authors: Keith A Russell, Natalie H C Chow, David Dukoff, Thomas W G Gibson, Jonathan LaMarre, Dean H Betts, Thomas G Koch
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5131977?pdf=render
_version_ 1828335691982962688
author Keith A Russell
Natalie H C Chow
David Dukoff
Thomas W G Gibson
Jonathan LaMarre
Dean H Betts
Thomas G Koch
author_facet Keith A Russell
Natalie H C Chow
David Dukoff
Thomas W G Gibson
Jonathan LaMarre
Dean H Betts
Thomas G Koch
author_sort Keith A Russell
collection DOAJ
description BACKGROUND:Mesenchymal stromal cells (MSC) hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cells is widely adopted. Little is known about the biology and function of canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes development of canine evidence-based MSC technologies. HYPOTHESIS AND OBJECTIVES:We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC (derived from the same dogs) will have similar differentiation and immune modulatory profiles. Our objectives were to evaluate progenitor and non-progenitor functions as well as other characteristics of AT- and BM-MSC including 1) proliferation rate, 2) cell surface marker expression, 3) DNA methylation levels, 4) potential for trilineage differentiation towards osteogenic, adipogenic, and chondrogenic cell fates, and 5) immunomodulatory potency in vitro. RESULTS:1) AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times in days) for passage (P) 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM: 5.34; P5, AT: 3.20, BM: 7.21). 2) Canine MSC, regardless of source, strongly expressed cell surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45. They also showed moderate expression of CD8 and CD73 and mild expression of CD14. Minor differences were found in expression of CD4 and CD34. 3) Global DNA methylation levels were significantly lower in BM-MSC compared to AT-MSC. 4) Little difference was found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis. Chondrogenesis was poor to absent for both sources in spite of adding varying levels of bone-morphogenic protein to our standard transforming growth factor (TGF-β3)-based induction medium. 5) Immunomodulatory capacity was equal regardless of cell source when tested in mitogen-stimulated lymphocyte reactions. Priming of MSC with pro-inflammatory factors interferon-gamma and/or tumour necrosis factor did not increase the lymphocyte suppressive properties of the MSC compared to untreated MSC. CONCLUSIONS/SIGNIFICANCE:No significant differences were found between AT- and BM-MSC with regard to their immunophenotype, progenitor, and non-progenitor functions. Both MSC populations showed strong adipogenic and osteogenic potential and poor chondrogenic potential. Both significantly suppressed stimulated peripheral blood mononuclear cells. The most significant differences found were the higher isolation success and proliferation rate of AT-MSC, which could be realized as notable benefits of their use over BM-MSC.
first_indexed 2024-04-13T21:51:51Z
format Article
id doaj.art-8280c80d0786452cb0bd24c468c54c02
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-04-13T21:51:51Z
publishDate 2016-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-8280c80d0786452cb0bd24c468c54c022022-12-22T02:28:24ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-011112e016744210.1371/journal.pone.0167442Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.Keith A RussellNatalie H C ChowDavid DukoffThomas W G GibsonJonathan LaMarreDean H BettsThomas G KochBACKGROUND:Mesenchymal stromal cells (MSC) hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cells is widely adopted. Little is known about the biology and function of canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes development of canine evidence-based MSC technologies. HYPOTHESIS AND OBJECTIVES:We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC (derived from the same dogs) will have similar differentiation and immune modulatory profiles. Our objectives were to evaluate progenitor and non-progenitor functions as well as other characteristics of AT- and BM-MSC including 1) proliferation rate, 2) cell surface marker expression, 3) DNA methylation levels, 4) potential for trilineage differentiation towards osteogenic, adipogenic, and chondrogenic cell fates, and 5) immunomodulatory potency in vitro. RESULTS:1) AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times in days) for passage (P) 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM: 5.34; P5, AT: 3.20, BM: 7.21). 2) Canine MSC, regardless of source, strongly expressed cell surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45. They also showed moderate expression of CD8 and CD73 and mild expression of CD14. Minor differences were found in expression of CD4 and CD34. 3) Global DNA methylation levels were significantly lower in BM-MSC compared to AT-MSC. 4) Little difference was found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis. Chondrogenesis was poor to absent for both sources in spite of adding varying levels of bone-morphogenic protein to our standard transforming growth factor (TGF-β3)-based induction medium. 5) Immunomodulatory capacity was equal regardless of cell source when tested in mitogen-stimulated lymphocyte reactions. Priming of MSC with pro-inflammatory factors interferon-gamma and/or tumour necrosis factor did not increase the lymphocyte suppressive properties of the MSC compared to untreated MSC. CONCLUSIONS/SIGNIFICANCE:No significant differences were found between AT- and BM-MSC with regard to their immunophenotype, progenitor, and non-progenitor functions. Both MSC populations showed strong adipogenic and osteogenic potential and poor chondrogenic potential. Both significantly suppressed stimulated peripheral blood mononuclear cells. The most significant differences found were the higher isolation success and proliferation rate of AT-MSC, which could be realized as notable benefits of their use over BM-MSC.http://europepmc.org/articles/PMC5131977?pdf=render
spellingShingle Keith A Russell
Natalie H C Chow
David Dukoff
Thomas W G Gibson
Jonathan LaMarre
Dean H Betts
Thomas G Koch
Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.
PLoS ONE
title Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.
title_full Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.
title_fullStr Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.
title_full_unstemmed Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.
title_short Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.
title_sort characterization and immunomodulatory effects of canine adipose tissue and bone marrow derived mesenchymal stromal cells
url http://europepmc.org/articles/PMC5131977?pdf=render
work_keys_str_mv AT keitharussell characterizationandimmunomodulatoryeffectsofcanineadiposetissueandbonemarrowderivedmesenchymalstromalcells
AT nataliehcchow characterizationandimmunomodulatoryeffectsofcanineadiposetissueandbonemarrowderivedmesenchymalstromalcells
AT daviddukoff characterizationandimmunomodulatoryeffectsofcanineadiposetissueandbonemarrowderivedmesenchymalstromalcells
AT thomaswggibson characterizationandimmunomodulatoryeffectsofcanineadiposetissueandbonemarrowderivedmesenchymalstromalcells
AT jonathanlamarre characterizationandimmunomodulatoryeffectsofcanineadiposetissueandbonemarrowderivedmesenchymalstromalcells
AT deanhbetts characterizationandimmunomodulatoryeffectsofcanineadiposetissueandbonemarrowderivedmesenchymalstromalcells
AT thomasgkoch characterizationandimmunomodulatoryeffectsofcanineadiposetissueandbonemarrowderivedmesenchymalstromalcells