Optimizing Metasurface-Component Performance by Improving Transmittance and Phase Match of the Nanopillars

In the propagation phase of a dielectric metasurface, there are two important problems. Firstly, the range of transmittance of the nanopillars for a building metasurface is usually between 60% and 100%, which reduces the metasurface’s overall transmittance and affects the uniformity of the transmitt...

Full description

Bibliographic Details
Main Authors: Xiaohong Sun, Shuang Huo, He Yang, Mengmeng Yan, Jianing Zhai, Saili Zhao, Yong Zeng
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/21/3720
Description
Summary:In the propagation phase of a dielectric metasurface, there are two important problems. Firstly, the range of transmittance of the nanopillars for a building metasurface is usually between 60% and 100%, which reduces the metasurface’s overall transmittance and affects the uniformity of the transmitted light. Secondly, the realistic phase provided by the nanopillar cannot be matched very well with the theoretical phase at each lattice location.The phase difference (between a realistic phase and theoretical phase) may reach tens of degrees. Here, we propose an interesting method to solve these problems. With this new method, a metalens is designed in this paper. The nanopillars for building the metalens have transmittance over 0.95, which increases the metalens transmittance and improves the light uniformity. In addition, with the new method, the phase differences of all elements in the metalens can also be reduced to be below 0.05°, decreasing the metalens spherical aberration dramatically. This method not only helps us to optimize the metalens but also provides a useful way for designing high-quality metasurfaces.
ISSN:2079-4991