Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light
Distributed temperature sensing has been achieved by spatially resolved measurement of the probe time delay resulted from stimulated-Brillouin-scattering slow light. The temperature of a particular fiber section can be monitored by setting an appropriate relative delay between the pump and probe pul...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2013-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/6648635/ |
Summary: | Distributed temperature sensing has been achieved by spatially resolved measurement of the probe time delay resulted from stimulated-Brillouin-scattering slow light. The temperature of a particular fiber section can be monitored by setting an appropriate relative delay between the pump and probe pulses. By controlling the relative delay, we have achieved distributed profiling of the temperature along the whole sensing fiber. This scheme provides an alternative way for distributed temperature sensing with the potential of real-time temperature monitoring. A relatively high-temperature resolution of 0.7°C is obtained. |
---|---|
ISSN: | 1943-0655 |