Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy

Surface-enhanced Raman spectroscopy (SERS) merges nanotechnology with conventional Raman spectroscopy to produce an ultrasensitive and highly specific analytical tool that has been exploited as the optical signal read-out in a variety of advanced applications. In this feature article, we delineate t...

Full description

Bibliographic Details
Main Authors: Irene Calderon, Luca Guerrini, Ramon A. Alvarez-Puebla
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/11/7/230
Description
Summary:Surface-enhanced Raman spectroscopy (SERS) merges nanotechnology with conventional Raman spectroscopy to produce an ultrasensitive and highly specific analytical tool that has been exploited as the optical signal read-out in a variety of advanced applications. In this feature article, we delineate the main features of the intertwined relationship between SERS and nucleic acids (NAs). In particular, we report representative examples of the implementation of SERS in biosensing platforms for NA detection, the integration of DNA as the biorecognition element onto plasmonic materials for SERS analysis of different classes of analytes (from metal ions to microorgniasms) and, finally, the use of structural DNA nanotechnology for the precise engineering of SERS-active nanomaterials.
ISSN:2079-6374