Effect of a Fine Fraction on Dynamic Properties of Recycled Concrete Aggregate as a Special Anthropogenic Soil

The literature confirms that fine recycled concrete aggregate (fRCA) can be used as a replacement for natural soil in new concrete, offering many advantages. Despite these advantages, there are also critical barriers to the development of fRCA in new mixes. Among these, the first challenge is the va...

Full description

Bibliographic Details
Main Authors: Katarzyna Gabryś, Raimondas Šadzevičius, Midona Dapkienė, Dainius Ramukevičius, Wojciech Sas
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/14/4986
Description
Summary:The literature confirms that fine recycled concrete aggregate (fRCA) can be used as a replacement for natural soil in new concrete, offering many advantages. Despite these advantages, there are also critical barriers to the development of fRCA in new mixes. Among these, the first challenge is the variability of fRCA properties, in both physical, chemical, and mechanical terms. Many individual studies have been carried out on different RCA or fRCA properties, but little investigative work has been performed to analyze their dynamic properties. Therefore, the influence of the non-cohesive fine fraction content of RCA on the dynamic properties of this waste material, when used as a specific anthropogenic soil, has been studied in laboratory conditions, employing a standard resonant column apparatus, as well as piezoelectric elements. In the present research, special emphasis has been placed on the dynamic shear modulus, dynamic damping ratio, small-strain shear modulus, and small-strain damping ratio, as well as shear modulus degradation G(γ)/G<sub>max</sub>, the damping ratio increase D(γ)/D<sub>min</sub>, and the threshold shear strain amplitudes γ<sub>tl</sub> and γ<sub>tv</sub>. Artificially prepared fRCAs with varying fine fraction contents (0% ≤ FF ≤ 30%, within increments of 5%) have been tested at different pressures (p′ = 90, 180, and 270 kPa) and relative densities of D<sub>r</sub> > 65%. This study also examined the effect of two tamping-based sample preparation methods, i.e., dry and wet tamping. The results presented herein indicate that the analyzed anthropogenic material, although derived from concrete and produced by human activities, behaves very similarly to natural aggregate when subjected to dynamic loading. The introduction of a fine fraction content to fRCA leads to changes in the dynamic properties of the tested mixture. Concrete material with lower stiffness but, at the same time, with stronger damping properties can be obtained. A fine fraction content of at least 30% is sufficient to cause a significant loss of stiffness and, at the same time, a significant increase in the damping properties of the mixture. This study can serve as a reference for designing fRCA mixtures in engineering applications.
ISSN:1996-1944