Silicon-Nanowire-Type Polarization-Diversified CWDM Demultiplexer for Low Polarization Crosstalk

Coarse wavelength division multiplexing (CWDM)-targeted novel silicon (Si)-nanowire-type polarization-diversified optical demultiplexers were numerically analyzed and experimentally verified. The optical demultiplexer comprised a hybrid mode conversion-type polarization splitter rotator (PSR) and a...

Full description

Bibliographic Details
Main Authors: Seok-Hwan Jeong, Heuk Park, Joon Ki Lee
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/13/16/2382
Description
Summary:Coarse wavelength division multiplexing (CWDM)-targeted novel silicon (Si)-nanowire-type polarization-diversified optical demultiplexers were numerically analyzed and experimentally verified. The optical demultiplexer comprised a hybrid mode conversion-type polarization splitter rotator (PSR) and a delayed Mach–Zehnder interferometric demultiplexer. Si-nanowire-based devices were fabricated using a commercially available Si photonics foundry process, exhibiting nearly identical spectral responses regardless of the polarization states of the input signals under the PSR. The experiment demonstrated a low insertion loss of 1.0 dB and a polarization-dependent loss of 1.0 dB, effectively suppressing spectral crosstalk from other channels by less than −15 dB. Furthermore, a TM-mode rejection-filter-integrated optical demultiplexer was designed and experimentally validated to mitigate unwanted TM-mode-related polarization crosstalk that arose from the PSR. It exhibited an improved polarization crosstalk rejection efficiency of −25 dB to −50 dB within the whole CWDM spectral range.
ISSN:2079-4991