Algoritmo de Karmarkar y matrices ralas

This is the second of a series of two articles en which we study the Karmarkar’s method. In this article we are going to show how can we use sparse matrix theory to get an efficient implementation of the Karmarkar’s process presented in the first article. In phase I of the Karmarkar’s process, it wa...

Full description

Bibliographic Details
Main Author: Juan Félix Ávila Herrera
Format: Article
Language:English
Published: Universidad de Costa Rica 2009-02-01
Series:Revista de Matemática: Teoría y Aplicaciones
Subjects:
Online Access:https://revistas.ucr.ac.cr/index.php/matematica/article/view/117
_version_ 1797766179025059840
author Juan Félix Ávila Herrera
author_facet Juan Félix Ávila Herrera
author_sort Juan Félix Ávila Herrera
collection DOAJ
description This is the second of a series of two articles en which we study the Karmarkar’s method. In this article we are going to show how can we use sparse matrix theory to get an efficient implementation of the Karmarkar’s process presented in the first article. In phase I of the Karmarkar’s process, it was evident how the size of the technological matrix increased. However, the new matrix has a special structure in which we observed the presence of zero’s blocks that make it a sparse matrix. We will discuss here some techniques to be used with this kind of matrix. Finally we propose a Kamarkar’s variant that takes advantage of this situation.
first_indexed 2024-03-12T20:20:34Z
format Article
id doaj.art-82f4ea84cccc42b888aa863f7f5be649
institution Directory Open Access Journal
issn 2215-3373
language English
last_indexed 2024-03-12T20:20:34Z
publishDate 2009-02-01
publisher Universidad de Costa Rica
record_format Article
series Revista de Matemática: Teoría y Aplicaciones
spelling doaj.art-82f4ea84cccc42b888aa863f7f5be6492023-08-02T00:58:17ZengUniversidad de Costa RicaRevista de Matemática: Teoría y Aplicaciones2215-33732009-02-0122354810.15517/rmta.v2i2.117102Algoritmo de Karmarkar y matrices ralasJuan Félix Ávila Herrera0Universidad Nacional, Escuela de InformáticaThis is the second of a series of two articles en which we study the Karmarkar’s method. In this article we are going to show how can we use sparse matrix theory to get an efficient implementation of the Karmarkar’s process presented in the first article. In phase I of the Karmarkar’s process, it was evident how the size of the technological matrix increased. However, the new matrix has a special structure in which we observed the presence of zero’s blocks that make it a sparse matrix. We will discuss here some techniques to be used with this kind of matrix. Finally we propose a Kamarkar’s variant that takes advantage of this situation.https://revistas.ucr.ac.cr/index.php/matematica/article/view/117método de Karmarkar
spellingShingle Juan Félix Ávila Herrera
Algoritmo de Karmarkar y matrices ralas
Revista de Matemática: Teoría y Aplicaciones
método de Karmarkar
title Algoritmo de Karmarkar y matrices ralas
title_full Algoritmo de Karmarkar y matrices ralas
title_fullStr Algoritmo de Karmarkar y matrices ralas
title_full_unstemmed Algoritmo de Karmarkar y matrices ralas
title_short Algoritmo de Karmarkar y matrices ralas
title_sort algoritmo de karmarkar y matrices ralas
topic método de Karmarkar
url https://revistas.ucr.ac.cr/index.php/matematica/article/view/117
work_keys_str_mv AT juanfelixavilaherrera algoritmodekarmarkarymatricesralas