Dynamical Properties of the Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Deviation of the Spatial Variable

We consider the problem of density wave propagation of a logistic equation with deviation of the spatial variable and diffusion (Fisher-Kolmogorov equation with deviation of the spatial variable). A Ginzburg–Landau equation was constructed in order to study the qualitative behavior of the solution ne...

Full description

Bibliographic Details
Main Authors: S. V. Aleshin, S. D. Glyzin, S. A. Kaschenko
Format: Article
Language:English
Published: Yaroslavl State University 2015-10-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/281
_version_ 1826558973826826240
author S. V. Aleshin
S. D. Glyzin
S. A. Kaschenko
author_facet S. V. Aleshin
S. D. Glyzin
S. A. Kaschenko
author_sort S. V. Aleshin
collection DOAJ
description We consider the problem of density wave propagation of a logistic equation with deviation of the spatial variable and diffusion (Fisher-Kolmogorov equation with deviation of the spatial variable). A Ginzburg–Landau equation was constructed in order to study the qualitative behavior of the solution near the equilibrium state. We analyzed the profile of the wave equation and found conditions for the appearance of oscillatory regimes. The numerical analysis of wave propagation shows that for a suficiently small spatial deviation this equation has a solution similar to the solution of the classical Fisher–Kolmogorov equation. The spatial deviation increasing leads to the existence of the oscillatory component in the spatial distribution of solutions. A further increase of the spatial deviation leads to destruction of the traveling wave. That is expressed in the fact that undamped spatio-temporal fluctuations exist in a neighborhood of the initial perturbation. These fluctuations are close to the solution of the corresponding boundary value problem with periodic boundary conditions. Finally, when the spatial deviation is suficiently large we observe intensive spatio-temporal fluctuations in the whole area of wave propagation.
first_indexed 2024-04-10T02:24:09Z
format Article
id doaj.art-830047026ca84c91b3e2f770b62140ff
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2025-03-14T08:53:00Z
publishDate 2015-10-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-830047026ca84c91b3e2f770b62140ff2025-03-02T12:46:57ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172015-10-0122560962810.18255/1818-1015-2015-5-609-628262Dynamical Properties of the Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Deviation of the Spatial VariableS. V. Aleshin0S. D. Glyzin1S. A. Kaschenko2Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia Scientific Center in Chernogolovka RAS, Lesnaya str., 9, Chernogolovka, Moscow region, 142432, RussiaYaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia Scientific Center in Chernogolovka RAS, Lesnaya str., 9, Chernogolovka, Moscow region, 142432, RussiaYaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow, 115409, RussiaWe consider the problem of density wave propagation of a logistic equation with deviation of the spatial variable and diffusion (Fisher-Kolmogorov equation with deviation of the spatial variable). A Ginzburg–Landau equation was constructed in order to study the qualitative behavior of the solution near the equilibrium state. We analyzed the profile of the wave equation and found conditions for the appearance of oscillatory regimes. The numerical analysis of wave propagation shows that for a suficiently small spatial deviation this equation has a solution similar to the solution of the classical Fisher–Kolmogorov equation. The spatial deviation increasing leads to the existence of the oscillatory component in the spatial distribution of solutions. A further increase of the spatial deviation leads to destruction of the traveling wave. That is expressed in the fact that undamped spatio-temporal fluctuations exist in a neighborhood of the initial perturbation. These fluctuations are close to the solution of the corresponding boundary value problem with periodic boundary conditions. Finally, when the spatial deviation is suficiently large we observe intensive spatio-temporal fluctuations in the whole area of wave propagation.https://www.mais-journal.ru/jour/article/view/281attractorbifurcationfisher-kolmogorov equationginzburg-landau equation
spellingShingle S. V. Aleshin
S. D. Glyzin
S. A. Kaschenko
Dynamical Properties of the Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Deviation of the Spatial Variable
Моделирование и анализ информационных систем
attractor
bifurcation
fisher-kolmogorov equation
ginzburg-landau equation
title Dynamical Properties of the Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Deviation of the Spatial Variable
title_full Dynamical Properties of the Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Deviation of the Spatial Variable
title_fullStr Dynamical Properties of the Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Deviation of the Spatial Variable
title_full_unstemmed Dynamical Properties of the Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Deviation of the Spatial Variable
title_short Dynamical Properties of the Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Deviation of the Spatial Variable
title_sort dynamical properties of the fisher kolmogorov petrovskii piscounov equation with deviation of the spatial variable
topic attractor
bifurcation
fisher-kolmogorov equation
ginzburg-landau equation
url https://www.mais-journal.ru/jour/article/view/281
work_keys_str_mv AT svaleshin dynamicalpropertiesofthefisherkolmogorovpetrovskiipiscounovequationwithdeviationofthespatialvariable
AT sdglyzin dynamicalpropertiesofthefisherkolmogorovpetrovskiipiscounovequationwithdeviationofthespatialvariable
AT sakaschenko dynamicalpropertiesofthefisherkolmogorovpetrovskiipiscounovequationwithdeviationofthespatialvariable