A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter

In massive Twitter datasets, tweets deriving from different domains, e.g., civil unrest, can be extracted to constitute spatio-temporal Twitter events for spatio-temporal distribution pattern detection. Existing algorithms generally employ scan statistics to detect spatio-temporal hotspots from Twit...

Full description

Bibliographic Details
Main Authors: Yan Shi, Min Deng, Xuexi Yang, Qiliang Liu, Liang Zhao, Chang-Tien Lu
Format: Article
Language:English
Published: MDPI AG 2016-10-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:http://www.mdpi.com/2220-9964/5/10/193
_version_ 1828807463054344192
author Yan Shi
Min Deng
Xuexi Yang
Qiliang Liu
Liang Zhao
Chang-Tien Lu
author_facet Yan Shi
Min Deng
Xuexi Yang
Qiliang Liu
Liang Zhao
Chang-Tien Lu
author_sort Yan Shi
collection DOAJ
description In massive Twitter datasets, tweets deriving from different domains, e.g., civil unrest, can be extracted to constitute spatio-temporal Twitter events for spatio-temporal distribution pattern detection. Existing algorithms generally employ scan statistics to detect spatio-temporal hotspots from Twitter events and do not consider the spatio-temporal evolving process of Twitter events. In this paper, a framework is proposed to discover evolving domain related spatio-temporal patterns from Twitter data. Given a target domain, a dynamic query expansion is employed to extract related tweets to form spatio-temporal Twitter events. The new spatial clustering approach proposed here is based on the use of multi-level constrained Delaunay triangulation to capture the spatial distribution patterns of Twitter events. An additional spatio-temporal clustering process is then performed to reveal spatio-temporal clusters and outliers that are evolving into spatial distribution patterns. Extensive experiments on Twitter datasets related to an outbreak of civil unrest in Mexico demonstrate the effectiveness and practicability of the new method. The proposed method will be helpful to accurately predict the spatio-temporal evolution process of Twitter events, which belongs to a deeper geographical analysis of spatio-temporal Big Data.
first_indexed 2024-12-12T08:26:09Z
format Article
id doaj.art-83102bfa31814b28ac55b2f1a1bf5c50
institution Directory Open Access Journal
issn 2220-9964
language English
last_indexed 2024-12-12T08:26:09Z
publishDate 2016-10-01
publisher MDPI AG
record_format Article
series ISPRS International Journal of Geo-Information
spelling doaj.art-83102bfa31814b28ac55b2f1a1bf5c502022-12-22T00:31:15ZengMDPI AGISPRS International Journal of Geo-Information2220-99642016-10-0151019310.3390/ijgi5100193ijgi5100193A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in TwitterYan Shi0Min Deng1Xuexi Yang2Qiliang Liu3Liang Zhao4Chang-Tien Lu5State Key Laboratory of Information Engineering in Surveying, Mapping & Remote Sensing, Wuhan University, Wuhan 430079, ChinaDepartment of Geo-informatics, Central South University, Changsha 410083, ChinaDepartment of Geo-informatics, Central South University, Changsha 410083, ChinaDepartment of Geo-informatics, Central South University, Changsha 410083, ChinaDepartment of Computer Science, Virginia Tech, Falls Church, VA 22043, USADepartment of Computer Science, Virginia Tech, Falls Church, VA 22043, USAIn massive Twitter datasets, tweets deriving from different domains, e.g., civil unrest, can be extracted to constitute spatio-temporal Twitter events for spatio-temporal distribution pattern detection. Existing algorithms generally employ scan statistics to detect spatio-temporal hotspots from Twitter events and do not consider the spatio-temporal evolving process of Twitter events. In this paper, a framework is proposed to discover evolving domain related spatio-temporal patterns from Twitter data. Given a target domain, a dynamic query expansion is employed to extract related tweets to form spatio-temporal Twitter events. The new spatial clustering approach proposed here is based on the use of multi-level constrained Delaunay triangulation to capture the spatial distribution patterns of Twitter events. An additional spatio-temporal clustering process is then performed to reveal spatio-temporal clusters and outliers that are evolving into spatial distribution patterns. Extensive experiments on Twitter datasets related to an outbreak of civil unrest in Mexico demonstrate the effectiveness and practicability of the new method. The proposed method will be helpful to accurately predict the spatio-temporal evolution process of Twitter events, which belongs to a deeper geographical analysis of spatio-temporal Big Data.http://www.mdpi.com/2220-9964/5/10/193Evolving spatio-temporal patternstarget domainsspatio-temporal Twitter eventsspatial clusteringspatio-temporal clustering
spellingShingle Yan Shi
Min Deng
Xuexi Yang
Qiliang Liu
Liang Zhao
Chang-Tien Lu
A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter
ISPRS International Journal of Geo-Information
Evolving spatio-temporal patterns
target domains
spatio-temporal Twitter events
spatial clustering
spatio-temporal clustering
title A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter
title_full A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter
title_fullStr A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter
title_full_unstemmed A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter
title_short A Framework for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter
title_sort framework for discovering evolving domain related spatio temporal patterns in twitter
topic Evolving spatio-temporal patterns
target domains
spatio-temporal Twitter events
spatial clustering
spatio-temporal clustering
url http://www.mdpi.com/2220-9964/5/10/193
work_keys_str_mv AT yanshi aframeworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT mindeng aframeworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT xuexiyang aframeworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT qiliangliu aframeworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT liangzhao aframeworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT changtienlu aframeworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT yanshi frameworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT mindeng frameworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT xuexiyang frameworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT qiliangliu frameworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT liangzhao frameworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter
AT changtienlu frameworkfordiscoveringevolvingdomainrelatedspatiotemporalpatternsintwitter