Integrated quantum optical phase sensor in thin film lithium niobate

Abstract The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). W...

Full description

Bibliographic Details
Main Authors: Hubert S. Stokowski, Timothy P. McKenna, Taewon Park, Alexander Y. Hwang, Devin J. Dean, Oguz Tolga Celik, Vahid Ansari, Martin M. Fejer, Amir H. Safavi-Naeini
Format: Article
Language:English
Published: Nature Portfolio 2023-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-38246-6
_version_ 1797806583290265600
author Hubert S. Stokowski
Timothy P. McKenna
Taewon Park
Alexander Y. Hwang
Devin J. Dean
Oguz Tolga Celik
Vahid Ansari
Martin M. Fejer
Amir H. Safavi-Naeini
author_facet Hubert S. Stokowski
Timothy P. McKenna
Taewon Park
Alexander Y. Hwang
Devin J. Dean
Oguz Tolga Celik
Vahid Ansari
Martin M. Fejer
Amir H. Safavi-Naeini
author_sort Hubert S. Stokowski
collection DOAJ
description Abstract The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
first_indexed 2024-03-13T06:09:27Z
format Article
id doaj.art-831705dbc7664b9bb42fa2d617335ebe
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-13T06:09:27Z
publishDate 2023-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-831705dbc7664b9bb42fa2d617335ebe2023-06-11T11:19:46ZengNature PortfolioNature Communications2041-17232023-06-0114111110.1038/s41467-023-38246-6Integrated quantum optical phase sensor in thin film lithium niobateHubert S. Stokowski0Timothy P. McKenna1Taewon Park2Alexander Y. Hwang3Devin J. Dean4Oguz Tolga Celik5Vahid Ansari6Martin M. Fejer7Amir H. Safavi-Naeini8Department of Applied Physics and Ginzton Laboratory, Stanford UniversityPhysics & Informatics Laboratories, NTT Research, Inc.Department of Applied Physics and Ginzton Laboratory, Stanford UniversityDepartment of Applied Physics and Ginzton Laboratory, Stanford UniversityDepartment of Applied Physics and Ginzton Laboratory, Stanford UniversityDepartment of Applied Physics and Ginzton Laboratory, Stanford UniversityDepartment of Applied Physics and Ginzton Laboratory, Stanford UniversityDepartment of Applied Physics and Ginzton Laboratory, Stanford UniversityDepartment of Applied Physics and Ginzton Laboratory, Stanford UniversityAbstract The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.https://doi.org/10.1038/s41467-023-38246-6
spellingShingle Hubert S. Stokowski
Timothy P. McKenna
Taewon Park
Alexander Y. Hwang
Devin J. Dean
Oguz Tolga Celik
Vahid Ansari
Martin M. Fejer
Amir H. Safavi-Naeini
Integrated quantum optical phase sensor in thin film lithium niobate
Nature Communications
title Integrated quantum optical phase sensor in thin film lithium niobate
title_full Integrated quantum optical phase sensor in thin film lithium niobate
title_fullStr Integrated quantum optical phase sensor in thin film lithium niobate
title_full_unstemmed Integrated quantum optical phase sensor in thin film lithium niobate
title_short Integrated quantum optical phase sensor in thin film lithium niobate
title_sort integrated quantum optical phase sensor in thin film lithium niobate
url https://doi.org/10.1038/s41467-023-38246-6
work_keys_str_mv AT hubertsstokowski integratedquantumopticalphasesensorinthinfilmlithiumniobate
AT timothypmckenna integratedquantumopticalphasesensorinthinfilmlithiumniobate
AT taewonpark integratedquantumopticalphasesensorinthinfilmlithiumniobate
AT alexanderyhwang integratedquantumopticalphasesensorinthinfilmlithiumniobate
AT devinjdean integratedquantumopticalphasesensorinthinfilmlithiumniobate
AT oguztolgacelik integratedquantumopticalphasesensorinthinfilmlithiumniobate
AT vahidansari integratedquantumopticalphasesensorinthinfilmlithiumniobate
AT martinmfejer integratedquantumopticalphasesensorinthinfilmlithiumniobate
AT amirhsafavinaeini integratedquantumopticalphasesensorinthinfilmlithiumniobate