Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom
Introduction: The accuracy of dose calculation algorithm (DCA) is highly considered in the radiotherapy sequences. This study aims at assessing the accuracy of five dose calculation algorithms in tissue inhomogeneity corrections, based on the International Atomic Energy Agency TEC-DOC 1583. Material...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Mashhad University of Medical Sciences
2019-07-01
|
Series: | Iranian Journal of Medical Physics |
Subjects: | |
Online Access: | http://ijmp.mums.ac.ir/article_11821_7eca03a32cd0ffccefffcbfe2c34b358.pdf |
_version_ | 1828350217379905536 |
---|---|
author | Nasibeh Kavousi Hassan Ali Nedaie Somayeh Gholami mahbod Esfahani Ghazale Geraily |
author_facet | Nasibeh Kavousi Hassan Ali Nedaie Somayeh Gholami mahbod Esfahani Ghazale Geraily |
author_sort | Nasibeh Kavousi |
collection | DOAJ |
description | Introduction: The accuracy of dose calculation algorithm (DCA) is highly considered in the radiotherapy sequences. This study aims at assessing the accuracy of five dose calculation algorithms in tissue inhomogeneity corrections, based on the International Atomic Energy Agency TEC-DOC 1583.
Material and Methods: A heterogeneous phantom was scanned using computed tomography and tests were planned on three-dimensional treatment planning systems (3D TPSs) based on IAEA TEC-DOC 1583.Doseswere measured for 6- and 18-MV photon beams with ion chambers and then the deviation between measured and calculated TPS doses were reported. The evaluated five DCAs include Monte Carlo (MC) algorithm employed by Monaco, pencil beam convolution (PBC) and anisotropic analytical algorithms (AAA) employed by Eclipse and Superposition (SP), and Clarkson algorithms employed by PCRT3D TPSs.
Results: In Clarkson algorithm, low and high energy photons indicated 7.1% and 14.8% deviations out of agreement criteria, respectively. The SP, AAA, and PBC algorithms indicated 0.9%, 7.4%, and 13.8% for low energy photon and 9.5%, 21.3%, and 23.2% for high energy photon deviations out of agreement criteria, respectively. However, MC algorithm showed 1.8% and less than 1% deviations at high and low energy photons, respectively.
Conclusion: The DCAs had different levels of accuracy in TPSs. Some simple DCAs, such as Clarkson, showed large deviations in some cases. Therefore, the transition to more advanced algorithms, such as MC would be desirable, particularly for the calculation in the presence of inhomogeneity or high energy beams. |
first_indexed | 2024-04-14T01:21:46Z |
format | Article |
id | doaj.art-83176880522b476a9e8eb3f1053393eb |
institution | Directory Open Access Journal |
issn | 2345-3672 2345-3672 |
language | English |
last_indexed | 2024-04-14T01:21:46Z |
publishDate | 2019-07-01 |
publisher | Mashhad University of Medical Sciences |
record_format | Article |
series | Iranian Journal of Medical Physics |
spelling | doaj.art-83176880522b476a9e8eb3f1053393eb2022-12-22T02:20:36ZengMashhad University of Medical SciencesIranian Journal of Medical Physics2345-36722345-36722019-07-0116428529310.22038/ijmp.2018.33695.141611821Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous PhantomNasibeh Kavousi0Hassan Ali Nedaie1Somayeh Gholami2mahbod Esfahani3Ghazale Geraily4Department of Medical Physics and Medical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.radiotherapy oncology department, cancer research centre, Tehran university of medical sciences,Tehran,Iran1. Department of Medical Physics and Medical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. 2. Radiotherapy Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.Radiotherapy Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.Department of Medical Physics, Tehran University of Medical Science, Tehran, IranIntroduction: The accuracy of dose calculation algorithm (DCA) is highly considered in the radiotherapy sequences. This study aims at assessing the accuracy of five dose calculation algorithms in tissue inhomogeneity corrections, based on the International Atomic Energy Agency TEC-DOC 1583. Material and Methods: A heterogeneous phantom was scanned using computed tomography and tests were planned on three-dimensional treatment planning systems (3D TPSs) based on IAEA TEC-DOC 1583.Doseswere measured for 6- and 18-MV photon beams with ion chambers and then the deviation between measured and calculated TPS doses were reported. The evaluated five DCAs include Monte Carlo (MC) algorithm employed by Monaco, pencil beam convolution (PBC) and anisotropic analytical algorithms (AAA) employed by Eclipse and Superposition (SP), and Clarkson algorithms employed by PCRT3D TPSs. Results: In Clarkson algorithm, low and high energy photons indicated 7.1% and 14.8% deviations out of agreement criteria, respectively. The SP, AAA, and PBC algorithms indicated 0.9%, 7.4%, and 13.8% for low energy photon and 9.5%, 21.3%, and 23.2% for high energy photon deviations out of agreement criteria, respectively. However, MC algorithm showed 1.8% and less than 1% deviations at high and low energy photons, respectively. Conclusion: The DCAs had different levels of accuracy in TPSs. Some simple DCAs, such as Clarkson, showed large deviations in some cases. Therefore, the transition to more advanced algorithms, such as MC would be desirable, particularly for the calculation in the presence of inhomogeneity or high energy beams.http://ijmp.mums.ac.ir/article_11821_7eca03a32cd0ffccefffcbfe2c34b358.pdfDoseAlgorithmTreatment PlanningRadiation Therapy |
spellingShingle | Nasibeh Kavousi Hassan Ali Nedaie Somayeh Gholami mahbod Esfahani Ghazale Geraily Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom Iranian Journal of Medical Physics Dose Algorithm Treatment Planning Radiation Therapy |
title | Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom |
title_full | Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom |
title_fullStr | Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom |
title_full_unstemmed | Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom |
title_short | Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom |
title_sort | evaluation of dose calculation algorithms accuracy for eclipse pcrt3d and monaco treatment planning systems using iaea tps commissioning tests in a heterogeneous phantom |
topic | Dose Algorithm Treatment Planning Radiation Therapy |
url | http://ijmp.mums.ac.ir/article_11821_7eca03a32cd0ffccefffcbfe2c34b358.pdf |
work_keys_str_mv | AT nasibehkavousi evaluationofdosecalculationalgorithmsaccuracyforeclipsepcrt3dandmonacotreatmentplanningsystemsusingiaeatpscommissioningtestsinaheterogeneousphantom AT hassanalinedaie evaluationofdosecalculationalgorithmsaccuracyforeclipsepcrt3dandmonacotreatmentplanningsystemsusingiaeatpscommissioningtestsinaheterogeneousphantom AT somayehgholami evaluationofdosecalculationalgorithmsaccuracyforeclipsepcrt3dandmonacotreatmentplanningsystemsusingiaeatpscommissioningtestsinaheterogeneousphantom AT mahbodesfahani evaluationofdosecalculationalgorithmsaccuracyforeclipsepcrt3dandmonacotreatmentplanningsystemsusingiaeatpscommissioningtestsinaheterogeneousphantom AT ghazalegeraily evaluationofdosecalculationalgorithmsaccuracyforeclipsepcrt3dandmonacotreatmentplanningsystemsusingiaeatpscommissioningtestsinaheterogeneousphantom |