Summary: | The transmission of a vertex <i>v</i> of a graph <i>G</i> is the sum of distances from <i>v</i> to all the other vertices of <i>G</i>. A transmission irregular graph (TI graph) has mutually distinct vertex transmissions. In 2018, Alizadeh and Klavžar posed the following question: do there exist infinite families of regular TI graphs? An infinite family of TI cubic graphs of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>118</mn><mo>+</mo><mn>72</mn><mi>k</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>, was constructed by Dobrynin in 2019. In this paper, we study the problem of finding TI cubic graphs for an arbitrary number of vertices. It is shown that there exists a TI cubic graph of an arbitrary even order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>22</mn></mrow></semantics></math></inline-formula>. Almost all constructed graphs are contained in twelve infinite families.
|