Seam carving based image resizing detection using hybrid features

Detection of seam carving-based digital image resizing is a challenging task in image processing field since the method investigates the images on hand semantically. Resizing with seam carving is realized by inserting or removing relatively unimportant pixel paths to/from the images and so the chang...

Full description

Bibliographic Details
Main Authors: Zehra Karapinar Senturk, Devrim Akgun
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2017-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/280289
Description
Summary:Detection of seam carving-based digital image resizing is a challenging task in image processing field since the method investigates the images on hand semantically. Resizing with seam carving is realized by inserting or removing relatively unimportant pixel paths to/from the images and so the changes in image content are mostly unnoticeable. Local Binary Patterns (LBP), a visual descriptor, unearths local changes in image texture. Therefore, using LBP transform of the images besides intensity values contributes to the detection ratio. In this paper, we proposed a hybrid detection mechanism for more accurate seam carving detection especially in low scaling ratios. We extracted LBP-based and non-LBP based features and trained a Support Vector Machine (SVM) with sixty features. We achieved approximately 9 % improvement in low detection ratios. The experimental results show that more satisfactory detection ratios can be obtained by the proposed hybrid approach.
ISSN:1330-3651
1848-6339