Measurements of UV radiation on rotating vertical plane at the ALOMAR Observatory (69° N, 16° E), Norway, June 2007

Erythemaly weighted UV and total UV-A irradiance measured at the ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research; 69° N, 16° E) in June 2007 by two Kipp & Zonen UV broadband meters type, UV-S-EA-T, are examined. One unit is mounted on rotating vertical plane and t...

Full description

Bibliographic Details
Main Authors: K. Stebel, J. Jaroslawski, J. W. Krzyścin, P. Sobolewski
Format: Article
Language:English
Published: Copernicus Publications 2008-06-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/8/3033/2008/acp-8-3033-2008.pdf
_version_ 1811260494512652288
author K. Stebel
J. Jaroslawski
J. W. Krzyścin
P. Sobolewski
author_facet K. Stebel
J. Jaroslawski
J. W. Krzyścin
P. Sobolewski
author_sort K. Stebel
collection DOAJ
description Erythemaly weighted UV and total UV-A irradiance measured at the ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research; 69&deg; N, 16&deg; E) in June 2007 by two Kipp & Zonen UV broadband meters type, UV-S-EA-T, are examined. One unit is mounted on rotating vertical plane and the other is permanently fixed horizontally. The UV broadband meters measure simultaneously to compare UV irradiances on vertical and horizontal planes. The entire range of such relative exposure variations during clear-sky and overcast conditions over ALOMAR in the period March–June 2007 is examined using STAR and Radonic1 model (developed at the Meteorological Institute, University of Munich) for various action spectra: erythema, UV-A, and vitamin D<sub>3</sub>. The model and observations support that the daily means of relative exposures are quite stable, i.e., vary within the range 0.4–0.6 with the mean around 0.5 when the averaged intra-day, day-to-day, and seasonal changes of the relative erythemal exposures are considered. It seems that multiplication of the daily mean dose from a broadband meter placed horizontally by the factor of 0.5 gives reasonable estimation of the daily mean exposure on a vertically oriented receiver randomly oriented towards the Sun. The model studies during clear-sky conditions show that the extreme value and daily variability of relative exposure are the highest for UV-A, next for erythemal UV, then for vitamin D<sub>3</sub> weighed UV irradiance. The minima of relative exposure (~0.20–0.30) are almost the same for all weighting functions. The comparison of model simulations and measurements suggests that specific cloud configuration could lead to significant enhancement of UV exposure of rotating receiver.
first_indexed 2024-04-12T18:47:17Z
format Article
id doaj.art-831f4826a63545179890eeb1cc75dd6a
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-12T18:47:17Z
publishDate 2008-06-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-831f4826a63545179890eeb1cc75dd6a2022-12-22T03:20:34ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242008-06-0181230333043Measurements of UV radiation on rotating vertical plane at the ALOMAR Observatory (69° N, 16° E), Norway, June 2007K. StebelJ. JaroslawskiJ. W. KrzyścinP. SobolewskiErythemaly weighted UV and total UV-A irradiance measured at the ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research; 69&deg; N, 16&deg; E) in June 2007 by two Kipp & Zonen UV broadband meters type, UV-S-EA-T, are examined. One unit is mounted on rotating vertical plane and the other is permanently fixed horizontally. The UV broadband meters measure simultaneously to compare UV irradiances on vertical and horizontal planes. The entire range of such relative exposure variations during clear-sky and overcast conditions over ALOMAR in the period March–June 2007 is examined using STAR and Radonic1 model (developed at the Meteorological Institute, University of Munich) for various action spectra: erythema, UV-A, and vitamin D<sub>3</sub>. The model and observations support that the daily means of relative exposures are quite stable, i.e., vary within the range 0.4–0.6 with the mean around 0.5 when the averaged intra-day, day-to-day, and seasonal changes of the relative erythemal exposures are considered. It seems that multiplication of the daily mean dose from a broadband meter placed horizontally by the factor of 0.5 gives reasonable estimation of the daily mean exposure on a vertically oriented receiver randomly oriented towards the Sun. The model studies during clear-sky conditions show that the extreme value and daily variability of relative exposure are the highest for UV-A, next for erythemal UV, then for vitamin D<sub>3</sub> weighed UV irradiance. The minima of relative exposure (~0.20–0.30) are almost the same for all weighting functions. The comparison of model simulations and measurements suggests that specific cloud configuration could lead to significant enhancement of UV exposure of rotating receiver.http://www.atmos-chem-phys.net/8/3033/2008/acp-8-3033-2008.pdf
spellingShingle K. Stebel
J. Jaroslawski
J. W. Krzyścin
P. Sobolewski
Measurements of UV radiation on rotating vertical plane at the ALOMAR Observatory (69° N, 16° E), Norway, June 2007
Atmospheric Chemistry and Physics
title Measurements of UV radiation on rotating vertical plane at the ALOMAR Observatory (69° N, 16° E), Norway, June 2007
title_full Measurements of UV radiation on rotating vertical plane at the ALOMAR Observatory (69° N, 16° E), Norway, June 2007
title_fullStr Measurements of UV radiation on rotating vertical plane at the ALOMAR Observatory (69° N, 16° E), Norway, June 2007
title_full_unstemmed Measurements of UV radiation on rotating vertical plane at the ALOMAR Observatory (69° N, 16° E), Norway, June 2007
title_short Measurements of UV radiation on rotating vertical plane at the ALOMAR Observatory (69° N, 16° E), Norway, June 2007
title_sort measurements of uv radiation on rotating vertical plane at the alomar observatory 69° n 16° e norway june 2007
url http://www.atmos-chem-phys.net/8/3033/2008/acp-8-3033-2008.pdf
work_keys_str_mv AT kstebel measurementsofuvradiationonrotatingverticalplaneatthealomarobservatory69n16enorwayjune2007
AT jjaroslawski measurementsofuvradiationonrotatingverticalplaneatthealomarobservatory69n16enorwayjune2007
AT jwkrzyscin measurementsofuvradiationonrotatingverticalplaneatthealomarobservatory69n16enorwayjune2007
AT psobolewski measurementsofuvradiationonrotatingverticalplaneatthealomarobservatory69n16enorwayjune2007