A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM

Abstract We shall interpret the null hexagonal Wilson loop (or, equivalently, six gluon scattering amplitude) in 4D N $$ \mathcal{N} $$ = 4 Super Yang-Mills, or, precisely, an integral representation of its matrix part, via an ADHM-like instanton construction. In this way, we can apply localisation...

Full description

Bibliographic Details
Main Authors: Davide Fioravanti, Hasmik Poghosyan, Rubik Poghossian
Format: Article
Language:English
Published: SpringerOpen 2021-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP10(2021)154
Description
Summary:Abstract We shall interpret the null hexagonal Wilson loop (or, equivalently, six gluon scattering amplitude) in 4D N $$ \mathcal{N} $$ = 4 Super Yang-Mills, or, precisely, an integral representation of its matrix part, via an ADHM-like instanton construction. In this way, we can apply localisation techniques to obtain combinatorial expressions in terms of Young diagrams. Then, we use our general formula to obtain explicit expressions in several explicit cases. In particular, we discuss those already available in the literature and find exact agreement. Moreover, we are capable to determine explicitly the denominator (poles) of the matrix part, and find some interesting recursion properties for the residues, as well.
ISSN:1029-8479