A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM

Abstract We shall interpret the null hexagonal Wilson loop (or, equivalently, six gluon scattering amplitude) in 4D N $$ \mathcal{N} $$ = 4 Super Yang-Mills, or, precisely, an integral representation of its matrix part, via an ADHM-like instanton construction. In this way, we can apply localisation...

Full description

Bibliographic Details
Main Authors: Davide Fioravanti, Hasmik Poghosyan, Rubik Poghossian
Format: Article
Language:English
Published: SpringerOpen 2021-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP10(2021)154
_version_ 1798033038102233088
author Davide Fioravanti
Hasmik Poghosyan
Rubik Poghossian
author_facet Davide Fioravanti
Hasmik Poghosyan
Rubik Poghossian
author_sort Davide Fioravanti
collection DOAJ
description Abstract We shall interpret the null hexagonal Wilson loop (or, equivalently, six gluon scattering amplitude) in 4D N $$ \mathcal{N} $$ = 4 Super Yang-Mills, or, precisely, an integral representation of its matrix part, via an ADHM-like instanton construction. In this way, we can apply localisation techniques to obtain combinatorial expressions in terms of Young diagrams. Then, we use our general formula to obtain explicit expressions in several explicit cases. In particular, we discuss those already available in the literature and find exact agreement. Moreover, we are capable to determine explicitly the denominator (poles) of the matrix part, and find some interesting recursion properties for the residues, as well.
first_indexed 2024-04-11T20:23:51Z
format Article
id doaj.art-83326ea86800412ca78bdd069edabe45
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-04-11T20:23:51Z
publishDate 2021-10-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-83326ea86800412ca78bdd069edabe452022-12-22T04:04:44ZengSpringerOpenJournal of High Energy Physics1029-84792021-10-0120211013610.1007/JHEP10(2021)154A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYMDavide Fioravanti0Hasmik Poghosyan1Rubik Poghossian2Sezione INFN di Bologna and Dipartimento di Fisica e Astronomia, Università di BolognaYerevan Physics InstituteYerevan Physics InstituteAbstract We shall interpret the null hexagonal Wilson loop (or, equivalently, six gluon scattering amplitude) in 4D N $$ \mathcal{N} $$ = 4 Super Yang-Mills, or, precisely, an integral representation of its matrix part, via an ADHM-like instanton construction. In this way, we can apply localisation techniques to obtain combinatorial expressions in terms of Young diagrams. Then, we use our general formula to obtain explicit expressions in several explicit cases. In particular, we discuss those already available in the literature and find exact agreement. Moreover, we are capable to determine explicitly the denominator (poles) of the matrix part, and find some interesting recursion properties for the residues, as well.https://doi.org/10.1007/JHEP10(2021)154Wilson, ’t Hooft and Polyakov loopsSupersymmetric Gauge TheoryAdS-CFT CorrespondenceSolitons Monopoles and Instantons
spellingShingle Davide Fioravanti
Hasmik Poghosyan
Rubik Poghossian
A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM
Journal of High Energy Physics
Wilson, ’t Hooft and Polyakov loops
Supersymmetric Gauge Theory
AdS-CFT Correspondence
Solitons Monopoles and Instantons
title A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM
title_full A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM
title_fullStr A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM
title_full_unstemmed A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM
title_short A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM
title_sort young diagram expansion of the hexagonal wilson loop amplitude in n mathcal n 4 sym
topic Wilson, ’t Hooft and Polyakov loops
Supersymmetric Gauge Theory
AdS-CFT Correspondence
Solitons Monopoles and Instantons
url https://doi.org/10.1007/JHEP10(2021)154
work_keys_str_mv AT davidefioravanti ayoungdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym
AT hasmikpoghosyan ayoungdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym
AT rubikpoghossian ayoungdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym
AT davidefioravanti youngdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym
AT hasmikpoghosyan youngdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym
AT rubikpoghossian youngdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym