A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM
Abstract We shall interpret the null hexagonal Wilson loop (or, equivalently, six gluon scattering amplitude) in 4D N $$ \mathcal{N} $$ = 4 Super Yang-Mills, or, precisely, an integral representation of its matrix part, via an ADHM-like instanton construction. In this way, we can apply localisation...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP10(2021)154 |
_version_ | 1798033038102233088 |
---|---|
author | Davide Fioravanti Hasmik Poghosyan Rubik Poghossian |
author_facet | Davide Fioravanti Hasmik Poghosyan Rubik Poghossian |
author_sort | Davide Fioravanti |
collection | DOAJ |
description | Abstract We shall interpret the null hexagonal Wilson loop (or, equivalently, six gluon scattering amplitude) in 4D N $$ \mathcal{N} $$ = 4 Super Yang-Mills, or, precisely, an integral representation of its matrix part, via an ADHM-like instanton construction. In this way, we can apply localisation techniques to obtain combinatorial expressions in terms of Young diagrams. Then, we use our general formula to obtain explicit expressions in several explicit cases. In particular, we discuss those already available in the literature and find exact agreement. Moreover, we are capable to determine explicitly the denominator (poles) of the matrix part, and find some interesting recursion properties for the residues, as well. |
first_indexed | 2024-04-11T20:23:51Z |
format | Article |
id | doaj.art-83326ea86800412ca78bdd069edabe45 |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-04-11T20:23:51Z |
publishDate | 2021-10-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-83326ea86800412ca78bdd069edabe452022-12-22T04:04:44ZengSpringerOpenJournal of High Energy Physics1029-84792021-10-0120211013610.1007/JHEP10(2021)154A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYMDavide Fioravanti0Hasmik Poghosyan1Rubik Poghossian2Sezione INFN di Bologna and Dipartimento di Fisica e Astronomia, Università di BolognaYerevan Physics InstituteYerevan Physics InstituteAbstract We shall interpret the null hexagonal Wilson loop (or, equivalently, six gluon scattering amplitude) in 4D N $$ \mathcal{N} $$ = 4 Super Yang-Mills, or, precisely, an integral representation of its matrix part, via an ADHM-like instanton construction. In this way, we can apply localisation techniques to obtain combinatorial expressions in terms of Young diagrams. Then, we use our general formula to obtain explicit expressions in several explicit cases. In particular, we discuss those already available in the literature and find exact agreement. Moreover, we are capable to determine explicitly the denominator (poles) of the matrix part, and find some interesting recursion properties for the residues, as well.https://doi.org/10.1007/JHEP10(2021)154Wilson, ’t Hooft and Polyakov loopsSupersymmetric Gauge TheoryAdS-CFT CorrespondenceSolitons Monopoles and Instantons |
spellingShingle | Davide Fioravanti Hasmik Poghosyan Rubik Poghossian A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM Journal of High Energy Physics Wilson, ’t Hooft and Polyakov loops Supersymmetric Gauge Theory AdS-CFT Correspondence Solitons Monopoles and Instantons |
title | A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM |
title_full | A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM |
title_fullStr | A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM |
title_full_unstemmed | A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM |
title_short | A Young diagram expansion of the hexagonal Wilson loop (amplitude) in N $$ \mathcal{N} $$ = 4 SYM |
title_sort | young diagram expansion of the hexagonal wilson loop amplitude in n mathcal n 4 sym |
topic | Wilson, ’t Hooft and Polyakov loops Supersymmetric Gauge Theory AdS-CFT Correspondence Solitons Monopoles and Instantons |
url | https://doi.org/10.1007/JHEP10(2021)154 |
work_keys_str_mv | AT davidefioravanti ayoungdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym AT hasmikpoghosyan ayoungdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym AT rubikpoghossian ayoungdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym AT davidefioravanti youngdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym AT hasmikpoghosyan youngdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym AT rubikpoghossian youngdiagramexpansionofthehexagonalwilsonloopamplitudeinnmathcaln4sym |