Maximal regularity for non-autonomous Cauchy problems in weighted spaces

We consider the regularity for the non-autonomous Cauchy problem $$ u'(t) + A(t) u(t) = f(t)\quad (t \in [0, \tau]), \quad u(0) = u_0. $$ The time dependent operator A(t) is associated with (time dependent) sesquilinear forms on a Hilbert space $\mathcal{H}$. We prove the maximal regular...

Full description

Bibliographic Details
Main Authors: Achache Mahdi, Tebbani Hossni
Format: Article
Language:English
Published: Texas State University 2020-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2020/124/abstr.html
_version_ 1818870479142780928
author Achache Mahdi
Tebbani Hossni
author_facet Achache Mahdi
Tebbani Hossni
author_sort Achache Mahdi
collection DOAJ
description We consider the regularity for the non-autonomous Cauchy problem $$ u'(t) + A(t) u(t) = f(t)\quad (t \in [0, \tau]), \quad u(0) = u_0. $$ The time dependent operator A(t) is associated with (time dependent) sesquilinear forms on a Hilbert space $\mathcal{H}$. We prove the maximal regularity result in temporally weighted L^2-spaces and other regularity properties for the solution of the problem under minimal regularity assumptions on the forms and the initial value u_0. Our results are motivated by boundary value problems.
first_indexed 2024-12-19T12:07:40Z
format Article
id doaj.art-8333daf1a55d40e590620443603b675d
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-19T12:07:40Z
publishDate 2020-12-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-8333daf1a55d40e590620443603b675d2022-12-21T20:22:18ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912020-12-012020124,124Maximal regularity for non-autonomous Cauchy problems in weighted spacesAchache Mahdi0Tebbani Hossni1 Univ. Bordeaux, Talence, France Univ. Setif -1-, Algeria We consider the regularity for the non-autonomous Cauchy problem $$ u'(t) + A(t) u(t) = f(t)\quad (t \in [0, \tau]), \quad u(0) = u_0. $$ The time dependent operator A(t) is associated with (time dependent) sesquilinear forms on a Hilbert space $\mathcal{H}$. We prove the maximal regularity result in temporally weighted L^2-spaces and other regularity properties for the solution of the problem under minimal regularity assumptions on the forms and the initial value u_0. Our results are motivated by boundary value problems.http://ejde.math.txstate.edu/Volumes/2020/124/abstr.htmlmaximal regularitynon-autonomous evolution equationweighted space
spellingShingle Achache Mahdi
Tebbani Hossni
Maximal regularity for non-autonomous Cauchy problems in weighted spaces
Electronic Journal of Differential Equations
maximal regularity
non-autonomous evolution equation
weighted space
title Maximal regularity for non-autonomous Cauchy problems in weighted spaces
title_full Maximal regularity for non-autonomous Cauchy problems in weighted spaces
title_fullStr Maximal regularity for non-autonomous Cauchy problems in weighted spaces
title_full_unstemmed Maximal regularity for non-autonomous Cauchy problems in weighted spaces
title_short Maximal regularity for non-autonomous Cauchy problems in weighted spaces
title_sort maximal regularity for non autonomous cauchy problems in weighted spaces
topic maximal regularity
non-autonomous evolution equation
weighted space
url http://ejde.math.txstate.edu/Volumes/2020/124/abstr.html
work_keys_str_mv AT achachemahdi maximalregularityfornonautonomouscauchyproblemsinweightedspaces
AT tebbanihossni maximalregularityfornonautonomouscauchyproblemsinweightedspaces