Ostrowski Type Inequalities via Some Exponentially s-Preinvex Functions on Time Scales with Applications

Integral inequalities concerned with convexity have many applications in several fields of mathematics in which symmetry plays an important role. In the theory of convexity, there exist strong connections between convexity and symmetry. If we are working on one of the concepts, then it can be applie...

Full description

Bibliographic Details
Main Authors: Kin Keung Lai, Shashi Kant Mishra, Vandana Singh
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/2/410
Description
Summary:Integral inequalities concerned with convexity have many applications in several fields of mathematics in which symmetry plays an important role. In the theory of convexity, there exist strong connections between convexity and symmetry. If we are working on one of the concepts, then it can be applied to the other of them. In this paper, we establish some novel generalizations of Ostrowski type inequalities for exponentially s-preinvex and s-preinvex functions on time scale by using Hölder inequality and Montgomery Identity. We also obtain applications to some special means. These results are motivated by the symmetric results obtained in the recent article by Abbasi and Anwar in 2022 on Ostrowski type inequalities for exponentially s-convex functions and s-convex functions on time scale. Moreover, we discuss several special cases of the results obtained in this paper.
ISSN:2073-8994