ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL) Activity in Cancer Vaccine Clinical Trials

The profiling and monitoring of immune responses are key elements in the evaluation of the efficacy and development of new biotherapies, and a number of assays have been introduced for analyzing various immune parameters before, during, and after immunotherapy. The choice of immune assays for a give...

Full description

Bibliographic Details
Main Authors: Thomas J. Sayers, Michael R. Shurin, Kimberly Dunham, Susan Strobl, Anatoli M. Malyguine
Format: Article
Language:English
Published: MDPI AG 2012-05-01
Series:Cells
Subjects:
Online Access:http://www.mdpi.com/2073-4409/1/2/111
Description
Summary:The profiling and monitoring of immune responses are key elements in the evaluation of the efficacy and development of new biotherapies, and a number of assays have been introduced for analyzing various immune parameters before, during, and after immunotherapy. The choice of immune assays for a given clinical trial depends on the known or suggested immunomodulating mechanisms associated with the tested therapeutic modality. Cell-mediated cytotoxicity represents a key mechanism in the immune response to various pathogens and tumors. Therefore, the selection of monitoring methods for the appropriate assessment of cell-mediated cytotoxicity is thought to be crucial. Assays that can detect both cytotoxic T lymphocytes (CTL) frequency and function, such as the IFN-γ enzyme-linked immunospot assay (ELISPOT) have gained increasing popularity for monitoring clinical trials and in basic research. Results from various clinical trials, including peptide and whole tumor cell vaccination and cytokine treatment, have shown the suitability of the IFN-γ ELISPOT assay for monitoring T cell responses. However, the Granzyme B ELISPOT assay and Perforin ELISPOT assay may represent a more direct analysis of cell-mediated cytotoxicity as compared to the IFN-γ ELISPOT, since Granzyme B and perforin are the key mediators of target cell death via the granule-mediated pathway. In this review we analyze our own data and the data reported by others with regard to the application of various modifications of ELISPOT assays for monitoring CTL activity in clinical vaccine trials.
ISSN:2073-4409