Protective effect of crude sulphated polysaccharides from Sargassum Swartzii (Turn.) C.Ag. against acetaminophen induced liver toxicity in rats

Abstract Background Polysaccharides from seaweeds have been reported to possess biological activities with potential medicinal value. Present study was aimed to investigate hepatoprotective effect of crude sulphated polysaccharides extracted from Sargassum swartzii against acetaminophen-induced live...

Full description

Bibliographic Details
Main Authors: Khan Hira, Viqar Sultana, Nasira Khatoon, Jehan Ara, Syed Ehteshamul-Haque
Format: Article
Language:English
Published: SpringerOpen 2019-02-01
Series:Clinical Phytoscience
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40816-019-0108-0
Description
Summary:Abstract Background Polysaccharides from seaweeds have been reported to possess biological activities with potential medicinal value. Present study was aimed to investigate hepatoprotective effect of crude sulphated polysaccharides extracted from Sargassum swartzii against acetaminophen-induced liver injury. Methods The polysaccharides from S. swartzii was extracted at room temperature and at 70 °C and named as EW1 and EW2. These fraction was given orally to rats at 200 mg/kg body weight. Liver injury was induced by single intraperitoneal injection of acetaminophen. Hepatic marker enzymes; alanine aminotransferases (ALT), aspartate aminotransferases (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin and other biochemical parameters; glucose, triglycerides, cholesterol, urea and creatinine were estimated in serum, while hepatic glutathione (GSH) and lipid peroxidation were measured in liver tissue. Histopathology of liver tissues was also carried out. Results Treatment with polysaccharides EW1 & EW2 fractions significantly (p < 0.05) reduced the hepatic marker enzymes and other biochemical parameters along with increased GSH and reduced lipid peroxidation. The EW1 fraction of crude sulphated polysaccharides produced hepatoprotection more or less equivalent to silymarin (35 mg/kg), a commercial herbal drug, while some parameters showed better results than silymarin. These results were further confirmed with histology of liver. Conclusion This study suggests that crude polysaccharides of S. swartzii has ability to protect against liver toxicity similar and/or better than silymarin (a standard drug) based on biochemical and histological findings. However toxicological studies would be recommended to evaluate any toxic effect of Sargassum swartzii.
ISSN:2199-1197