Prediction of SARS-CoV-2 infection with a Symptoms-Based model to aid public health decision making in Latin America and other low and middle income settings

Symptoms-based models for predicting SARS-CoV-2 infection may improve clinical decision-making and be an alternative to resource allocation in under-resourced settings. In this study we aimed to test a model based on symptoms to predict a positive test result for SARS-CoV-2 infection during the COVI...

Full description

Bibliographic Details
Main Authors: Andrea Ramírez Varela, Sergio Moreno López, Sandra Contreras-Arrieta, Guillermo Tamayo-Cabeza, Silvia Restrepo-Restrepo, Ignacio Sarmiento-Barbieri, Yuldor Caballero-Díaz, Luis Jorge Hernandez-Florez, John Mario González, Leonardo Salas-Zapata, Rachid Laajaj, Giancarlo Buitrago-Gutierrez, Fernando de la Hoz-Restrepo, Martha Vives Florez, Elkin Osorio, Diana Sofía Ríos-Oliveros, Eduardo Behrentz
Format: Article
Language:English
Published: Elsevier 2022-06-01
Series:Preventive Medicine Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S221133552200105X
_version_ 1828730762686365696
author Andrea Ramírez Varela
Sergio Moreno López
Sandra Contreras-Arrieta
Guillermo Tamayo-Cabeza
Silvia Restrepo-Restrepo
Ignacio Sarmiento-Barbieri
Yuldor Caballero-Díaz
Luis Jorge Hernandez-Florez
John Mario González
Leonardo Salas-Zapata
Rachid Laajaj
Giancarlo Buitrago-Gutierrez
Fernando de la Hoz-Restrepo
Martha Vives Florez
Elkin Osorio
Diana Sofía Ríos-Oliveros
Eduardo Behrentz
author_facet Andrea Ramírez Varela
Sergio Moreno López
Sandra Contreras-Arrieta
Guillermo Tamayo-Cabeza
Silvia Restrepo-Restrepo
Ignacio Sarmiento-Barbieri
Yuldor Caballero-Díaz
Luis Jorge Hernandez-Florez
John Mario González
Leonardo Salas-Zapata
Rachid Laajaj
Giancarlo Buitrago-Gutierrez
Fernando de la Hoz-Restrepo
Martha Vives Florez
Elkin Osorio
Diana Sofía Ríos-Oliveros
Eduardo Behrentz
author_sort Andrea Ramírez Varela
collection DOAJ
description Symptoms-based models for predicting SARS-CoV-2 infection may improve clinical decision-making and be an alternative to resource allocation in under-resourced settings. In this study we aimed to test a model based on symptoms to predict a positive test result for SARS-CoV-2 infection during the COVID-19 pandemic using logistic regression and a machine-learning approach, in Bogotá, Colombia. Participants from the CoVIDA project were included. A logistic regression using the model was chosen based on biological plausibility and the Akaike Information criterion. Also, we performed an analysis using machine learning with random forest, support vector machine, and extreme gradient boosting. The study included 58,577 participants with a positivity rate of 5.7%. The logistic regression showed that anosmia (aOR = 7.76, 95% CI [6.19, 9.73]), fever (aOR = 4.29, 95% CI [3.07, 6.02]), headache (aOR = 3.29, 95% CI [1.78, 6.07]), dry cough (aOR = 2.96, 95% CI [2.44, 3.58]), and fatigue (aOR = 1.93, 95% CI [1.57, 2.93]) were independently associated with SARS-CoV-2 infection. Our final model had an area under the curve of 0.73. The symptoms-based model correctly identified over 85% of participants. This model can be used to prioritize resource allocation related to COVID-19 diagnosis, to decide on early isolation, and contact-tracing strategies in individuals with a high probability of infection before receiving a confirmatory test result. This strategy has public health and clinical decision-making significance in low- and middle-income settings like Latin America.
first_indexed 2024-04-12T17:35:56Z
format Article
id doaj.art-8348b7e7f6384cc1bd197c7ddfa68ae5
institution Directory Open Access Journal
issn 2211-3355
language English
last_indexed 2024-04-12T17:35:56Z
publishDate 2022-06-01
publisher Elsevier
record_format Article
series Preventive Medicine Reports
spelling doaj.art-8348b7e7f6384cc1bd197c7ddfa68ae52022-12-22T03:22:59ZengElsevierPreventive Medicine Reports2211-33552022-06-0127101798Prediction of SARS-CoV-2 infection with a Symptoms-Based model to aid public health decision making in Latin America and other low and middle income settingsAndrea Ramírez Varela0Sergio Moreno López1Sandra Contreras-Arrieta2Guillermo Tamayo-Cabeza3Silvia Restrepo-Restrepo4Ignacio Sarmiento-Barbieri5Yuldor Caballero-Díaz6Luis Jorge Hernandez-Florez7John Mario González8Leonardo Salas-Zapata9Rachid Laajaj10Giancarlo Buitrago-Gutierrez11Fernando de la Hoz-Restrepo12Martha Vives Florez13Elkin Osorio14Diana Sofía Ríos-Oliveros15Eduardo Behrentz16Universidad de los Andes, Bogotá, Colombia; Corresponding author at: School of Medicine, Universidad de los Andes, Cra 7 #116-05, 110111 Bogotá, Colombia.Universidad de los Andes, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaSecretaría Distrital de Salud de Bogotá, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaInstituto de Investigaciones Clínicas, Universidad Nacional de Colombia. Bogotá, ColombiaUniversidad Nacional de Colombia, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaSecretaría Distrital de Salud de Bogotá, Bogotá, ColombiaSecretaría Distrital de Salud de Bogotá, Bogotá, ColombiaUniversidad de los Andes, Bogotá, ColombiaSymptoms-based models for predicting SARS-CoV-2 infection may improve clinical decision-making and be an alternative to resource allocation in under-resourced settings. In this study we aimed to test a model based on symptoms to predict a positive test result for SARS-CoV-2 infection during the COVID-19 pandemic using logistic regression and a machine-learning approach, in Bogotá, Colombia. Participants from the CoVIDA project were included. A logistic regression using the model was chosen based on biological plausibility and the Akaike Information criterion. Also, we performed an analysis using machine learning with random forest, support vector machine, and extreme gradient boosting. The study included 58,577 participants with a positivity rate of 5.7%. The logistic regression showed that anosmia (aOR = 7.76, 95% CI [6.19, 9.73]), fever (aOR = 4.29, 95% CI [3.07, 6.02]), headache (aOR = 3.29, 95% CI [1.78, 6.07]), dry cough (aOR = 2.96, 95% CI [2.44, 3.58]), and fatigue (aOR = 1.93, 95% CI [1.57, 2.93]) were independently associated with SARS-CoV-2 infection. Our final model had an area under the curve of 0.73. The symptoms-based model correctly identified over 85% of participants. This model can be used to prioritize resource allocation related to COVID-19 diagnosis, to decide on early isolation, and contact-tracing strategies in individuals with a high probability of infection before receiving a confirmatory test result. This strategy has public health and clinical decision-making significance in low- and middle-income settings like Latin America.http://www.sciencedirect.com/science/article/pii/S221133552200105XSARS-CoV-2COVID-19Logistic modelMachine learningSymptomsAnosmia
spellingShingle Andrea Ramírez Varela
Sergio Moreno López
Sandra Contreras-Arrieta
Guillermo Tamayo-Cabeza
Silvia Restrepo-Restrepo
Ignacio Sarmiento-Barbieri
Yuldor Caballero-Díaz
Luis Jorge Hernandez-Florez
John Mario González
Leonardo Salas-Zapata
Rachid Laajaj
Giancarlo Buitrago-Gutierrez
Fernando de la Hoz-Restrepo
Martha Vives Florez
Elkin Osorio
Diana Sofía Ríos-Oliveros
Eduardo Behrentz
Prediction of SARS-CoV-2 infection with a Symptoms-Based model to aid public health decision making in Latin America and other low and middle income settings
Preventive Medicine Reports
SARS-CoV-2
COVID-19
Logistic model
Machine learning
Symptoms
Anosmia
title Prediction of SARS-CoV-2 infection with a Symptoms-Based model to aid public health decision making in Latin America and other low and middle income settings
title_full Prediction of SARS-CoV-2 infection with a Symptoms-Based model to aid public health decision making in Latin America and other low and middle income settings
title_fullStr Prediction of SARS-CoV-2 infection with a Symptoms-Based model to aid public health decision making in Latin America and other low and middle income settings
title_full_unstemmed Prediction of SARS-CoV-2 infection with a Symptoms-Based model to aid public health decision making in Latin America and other low and middle income settings
title_short Prediction of SARS-CoV-2 infection with a Symptoms-Based model to aid public health decision making in Latin America and other low and middle income settings
title_sort prediction of sars cov 2 infection with a symptoms based model to aid public health decision making in latin america and other low and middle income settings
topic SARS-CoV-2
COVID-19
Logistic model
Machine learning
Symptoms
Anosmia
url http://www.sciencedirect.com/science/article/pii/S221133552200105X
work_keys_str_mv AT andrearamirezvarela predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT sergiomorenolopez predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT sandracontrerasarrieta predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT guillermotamayocabeza predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT silviarestreporestrepo predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT ignaciosarmientobarbieri predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT yuldorcaballerodiaz predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT luisjorgehernandezflorez predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT johnmariogonzalez predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT leonardosalaszapata predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT rachidlaajaj predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT giancarlobuitragogutierrez predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT fernandodelahozrestrepo predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT marthavivesflorez predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT elkinosorio predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT dianasofiariosoliveros predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings
AT eduardobehrentz predictionofsarscov2infectionwithasymptomsbasedmodeltoaidpublichealthdecisionmakinginlatinamericaandotherlowandmiddleincomesettings