Summary: | At a global scale, about three billion people have inadequate zinc (Zn) and iron (Fe) nutrition and 500,000 children lose their lives due to this. In recent years, the interest in adopting healthy diets drew increased attention to mineral nutrients, including Zn. Zn is an essential micronutrient for plant growth and development that is involved in several processes, like acting as a cofactor for hundreds of enzymes, chlorophyll biosynthesis, gene expression, signal transduction, and plant defense systems. Many agricultural soils are unable to supply the Zn needs of crop plants, making Zn deficiency a widespread nutritional disorder, particularly in calcareous (pH > 7) soils worldwide. Plant Zn efficiency involves Zn uptake, transport, and utilization; plants with high Zn efficiency display high yield and significant growth under low Zn supply and offer a promising and sustainable solution for the production of many crops, such as rice, beans, wheat, soybeans, and maize. The goal of this review is to report the current knowledge on key Zn efficiency traits including root system uptake, Zn transporters, and shoot Zn utilization. These mechanisms will be valuable for increasing the Zn efficiency of crops and food Zn contents to meet global needs for food production and nutrition in the 21st century. Furthermore, future research will address the target genes underlying Zn efficiency and the optimization of Zn efficiency phenotyping for the development of Zn-efficient crop varieties for more sustainable crop production under suboptimal Zn regimes, as well food security of the future.
|