Training neural networks on domain randomized simulations for ultrasonic inspection [version 2; peer review: 2 approved]

To overcome the data scarcity problem of machine learning for nondestructive testing, data augmentation is a commonly used strategy. We propose a method to enable training of neural networks exclusively on simulated data. Simulations not only provide a scalable way to generate and access training da...

Full description

Bibliographic Details
Main Authors: Klaus Schlachter, Sebastian Zambal, Kastor Felsner
Format: Article
Language:English
Published: F1000 Research Ltd 2022-05-01
Series:Open Research Europe
Subjects:
Online Access:https://open-research-europe.ec.europa.eu/articles/2-43/v2
Description
Summary:To overcome the data scarcity problem of machine learning for nondestructive testing, data augmentation is a commonly used strategy. We propose a method to enable training of neural networks exclusively on simulated data. Simulations not only provide a scalable way to generate and access training data, but also make it possible to cover edge cases which rarely appear in the real world. However, simulating data acquired from complex nondestructive testing methods is still a challenging task. Due to necessary simplifications and a limited accuracy of parameter identification, statistical models trained solely on simulated data often generalize poorly to the real world. Some effort has been made in the field to adapt pre-trained classifiers with a small set of real world data. A different approach for bridging the reality gap is domain randomization which was recently very successfully applied in different fields of autonomous robotics. In this study, we apply this approach for ultrasonic testing of carbon-fiber-reinforced plastics. Phased array captures of virtual specimens are simulated by approximating sound propagation via ray tracing. In addition to a variation of the geometric model of the specimen and its defects, we vary simulation parameters. Results indicate that this approach allows a generalization to the real world without applying any domain adaptation. Further, the trained network distinguishes correctly between ghost artifacts and defects. Although this study is tailored towards evaluation of ultrasound phased array captures, the presented approach generalizes to other nondestructive testing methods.
ISSN:2732-5121