Phosphorylation of Tau at S422 is enhanced by Aβ in TauPS2APP triple transgenic mice

Amyloid beta peptides and microtubule-associated protein Tau are misfolded and form aggregates in brains of Alzheimer's disease patients. To examine their specific roles in the pathogenesis of Alzheimer's disease and their relevance in neurodegenerative processes, we have created TauPS2APP...

Full description

Bibliographic Details
Main Authors: Fiona Grueninger, Bernd Bohrmann, Christian Czech, Theresa Maria Ballard, Johann R. Frey, Claudia Weidensteiner, Markus von Kienlin, Laurence Ozmen
Format: Article
Language:English
Published: Elsevier 2010-02-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996109002459
Description
Summary:Amyloid beta peptides and microtubule-associated protein Tau are misfolded and form aggregates in brains of Alzheimer's disease patients. To examine their specific roles in the pathogenesis of Alzheimer's disease and their relevance in neurodegenerative processes, we have created TauPS2APP triple transgenic mice that express human mutated Amyloid Precursor Protein, presenilin 2 and Tau. We present a cross-sectional analysis of these mice at 4, 8, 12 and 16 months of age. By comparing with single transgenic Tau mice, we demonstrate that accumulation of Aβ in TauPS2APP triple transgenic mice impacts on Tau pathology by increasing the phosphorylation of Tau at serine 422, as determined by a novel immunodetection method that is able to reliably measure phospho-Tau species in transgenic mouse brains. The TauPS2APP triple transgenic mouse model will be very useful for studying the effect of new therapeutic paradigms on amyloid deposition and downstream neurofibrillary tangle development.
ISSN:1095-953X