Combined Genome, Transcriptome and Metabolome Analysis in the Diagnosis of Childhood Cerebellar Ataxia

Ataxia in children is a common clinical sign of numerous neurological disorders consisting of impaired coordination of voluntary muscle movement. Its most common form, cerebellar ataxia, describes a heterogeneous array of neurologic conditions with uncountable causes broadly divided as acquired or g...

Full description

Bibliographic Details
Main Authors: Ana Ching-López, Luis Javier Martinez-Gonzalez, Luisa Arrabal, Jorge Sáiz, Ángela Gavilán, Coral Barbas, Jose Antonio Lorente, Susana Roldán, Maria José Sánchez, Purificacion Gutierrez-Ríos
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/6/2990
Description
Summary:Ataxia in children is a common clinical sign of numerous neurological disorders consisting of impaired coordination of voluntary muscle movement. Its most common form, cerebellar ataxia, describes a heterogeneous array of neurologic conditions with uncountable causes broadly divided as acquired or genetic. Numerous genetic disorders are associated with chronic progressive ataxia, which complicates clinical management, particularly on the diagnostic stage. Advances in omics technologies enable improvements in clinical practice and research, so we proposed a multi-omics approach to aid in the genetic diagnosis and molecular elucidation of an undiagnosed infantile condition of chronic progressive cerebellar ataxia. Using whole-exome sequencing, RNA-seq, and untargeted metabolomics, we identified three clinically relevant mutations (rs141471029, rs191582628 and rs398124292) and an altered metabolic profile in our patient. Two <i>POLR1C</i> diagnostic variants already classified as pathogenic were found, and a diagnosis of hypomyelinating leukodystrophy was achieved. A mutation on the <i>MMACHC</i> gene, known to be associated with methylmalonic aciduria and homocystinuria cblC type, was also found. Additionally, preliminary metabolome analysis revealed alterations in our patient’s amino acid, fatty acid and carbohydrate metabolism. Our findings provided a definitive genetic diagnosis reinforcing the association between <i>POLR1C</i> mutations and hypomyelinating leukodystrophy and highlighted the relevance of multi-omics approaches to the disease.
ISSN:1661-6596
1422-0067