An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability

Inspired by the efficient locomotion of insects in nature, researchers have been developing a diverse range of soft robots with simulated locomotion. These robots can perform various tasks, such as carrying medicines and collecting information, according to their movements. Compared to traditional r...

Full description

Bibliographic Details
Main Authors: Han Huang, Yu Feng, Xiong Yang, Liu Yang, Yajing Shen
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/13/10/1578
Description
Summary:Inspired by the efficient locomotion of insects in nature, researchers have been developing a diverse range of soft robots with simulated locomotion. These robots can perform various tasks, such as carrying medicines and collecting information, according to their movements. Compared to traditional rigid robots, flexible robots are more adaptable and terrain-immune and can even interact safely with people. Despite the development of biomimetic principles for soft robots, how their shapes, morphology, and actuation systems respond to the surrounding environments and stimuli still need to be improved. Here, we demonstrate an insect-scale soft robot with multi-locomotion modes made by Ecoflex and magnetic particles, which can be actuated by a magnetic field. Our robot can realize four distinct gaits: horizontal tumbling for distance, vertical tumbling for height, imitation of gastropod writhing, and inchworm-inspired crawling for cargo delivery. The soft compliant structure and four locomotion modes make the robot ideal for maneuvering in congested or complex spaces. In addition to linear motion (~20 mm/s) and turning (50°/s) on a flat terrain, the robot can also maneuver on various surface conditions (such as gaps, smooth slopes, sand, muddy terrain, and water). These merits, together with the robot’s high load-carrying capacity (5 times its weight), low cost, obstacle-crossing capability (as high as ~50% its length), and pressure resistance (70 kg), allow for a wide variety of applications.
ISSN:2072-666X