Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations

We consider a stochastic differential equation (SDE) governed by a fractional Brownian motion <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msubsup><mi>B</mi><...

Full description

Bibliographic Details
Main Authors: John-Fritz Thony, Jean Vaillant
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/22/4190
_version_ 1797464703583125504
author John-Fritz Thony
Jean Vaillant
author_facet John-Fritz Thony
Jean Vaillant
author_sort John-Fritz Thony
collection DOAJ
description We consider a stochastic differential equation (SDE) governed by a fractional Brownian motion <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msubsup><mi>B</mi><mrow><mi>t</mi></mrow><mi>H</mi></msubsup><mo>)</mo></mrow></semantics></math></inline-formula> and a Poisson process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>t</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> associated with a stochastic process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>A</mi><mi>t</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> such that: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><msub><mi>X</mi><mi>t</mi></msub><mo>=</mo><mi>μ</mi><msub><mi>X</mi><mi>t</mi></msub><mi>d</mi><mi>t</mi><mo>+</mo><mi>σ</mi><msub><mi>X</mi><mi>t</mi></msub><mi>d</mi><msubsup><mi>B</mi><mrow><mi>t</mi></mrow><mi>H</mi></msubsup><mo>+</mo><msub><mi>A</mi><mi>t</mi></msub><msub><mi>X</mi><msup><mi>t</mi><mo>−</mo></msup></msub><mi>d</mi><msub><mi>N</mi><mi>t</mi></msub><mo>,</mo><mspace width="1.em"></mspace><msub><mi>X</mi><mn>0</mn></msub><mo>=</mo><msub><mi>x</mi><mn>0</mn></msub><mo>></mo><mn>0</mn><mo>.</mo></mrow></semantics></math></inline-formula> The solution of this SDE is analyzed and properties of its trajectories are presented. Estimators of the model parameters are proposed when the observations are carried out in discrete time. Some convergence properties of these estimators are provided according to conditions concerning the value of the Hurst index and the nonequidistance of the observation dates.
first_indexed 2024-03-09T18:10:56Z
format Article
id doaj.art-837d8c6129104e7c8b8ae203297222e6
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T18:10:56Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-837d8c6129104e7c8b8ae203297222e62023-11-24T09:07:27ZengMDPI AGMathematics2227-73902022-11-011022419010.3390/math10224190Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time ObservationsJohn-Fritz Thony0Jean Vaillant1Laboratoire de Mathématiques et Informatique et Applications (LAMIA), Université des Antilles, 97157 Pointe-à-Pitre, FranceLaboratoire de Mathématiques et Informatique et Applications (LAMIA), Université des Antilles, 97157 Pointe-à-Pitre, FranceWe consider a stochastic differential equation (SDE) governed by a fractional Brownian motion <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msubsup><mi>B</mi><mrow><mi>t</mi></mrow><mi>H</mi></msubsup><mo>)</mo></mrow></semantics></math></inline-formula> and a Poisson process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>t</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> associated with a stochastic process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>A</mi><mi>t</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> such that: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><msub><mi>X</mi><mi>t</mi></msub><mo>=</mo><mi>μ</mi><msub><mi>X</mi><mi>t</mi></msub><mi>d</mi><mi>t</mi><mo>+</mo><mi>σ</mi><msub><mi>X</mi><mi>t</mi></msub><mi>d</mi><msubsup><mi>B</mi><mrow><mi>t</mi></mrow><mi>H</mi></msubsup><mo>+</mo><msub><mi>A</mi><mi>t</mi></msub><msub><mi>X</mi><msup><mi>t</mi><mo>−</mo></msup></msub><mi>d</mi><msub><mi>N</mi><mi>t</mi></msub><mo>,</mo><mspace width="1.em"></mspace><msub><mi>X</mi><mn>0</mn></msub><mo>=</mo><msub><mi>x</mi><mn>0</mn></msub><mo>></mo><mn>0</mn><mo>.</mo></mrow></semantics></math></inline-formula> The solution of this SDE is analyzed and properties of its trajectories are presented. Estimators of the model parameters are proposed when the observations are carried out in discrete time. Some convergence properties of these estimators are provided according to conditions concerning the value of the Hurst index and the nonequidistance of the observation dates.https://www.mdpi.com/2227-7390/10/22/4190stochastic differential equationfractional Black–Scholesjump processmaximum likelihood estimation
spellingShingle John-Fritz Thony
Jean Vaillant
Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations
Mathematics
stochastic differential equation
fractional Black–Scholes
jump process
maximum likelihood estimation
title Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations
title_full Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations
title_fullStr Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations
title_full_unstemmed Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations
title_short Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations
title_sort parameter estimation for a fractional black scholes model with jumps from discrete time observations
topic stochastic differential equation
fractional Black–Scholes
jump process
maximum likelihood estimation
url https://www.mdpi.com/2227-7390/10/22/4190
work_keys_str_mv AT johnfritzthony parameterestimationforafractionalblackscholesmodelwithjumpsfromdiscretetimeobservations
AT jeanvaillant parameterestimationforafractionalblackscholesmodelwithjumpsfromdiscretetimeobservations